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Abstract
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1 Introduction

Wildfire risk threatens the California economy through increased greenhouse-gas emissions,

loss of human life (both directly due to the fires and indirectly due to increased air pollution),

and losses to real estate and infrastructure.1 Paci et al. (2023) estimate that wildfires caused

economic losses to the state averaging $117.4 billion per year between 2012 and 2021, of which

$1.2 billion was the cost of extra greenhouse-gas emissions. Wildfires led to the destruction of

more than 60,000 structures and to 302 civilian and firefighter fatalities in California between

2002 and 2021 (Safford et al., 2022). By itself, the 2018 Camp Fire, which burned Paradise,

California, caused $27.7 billion in capital losses, $32.2 billion in health costs, $88.6 billion in

indirect losses (Wang et al., 2021), 85 deaths, and the destruction of 18,804 structures.2

In this paper, we measure vegetative wildfires using data from the California Department

of Forestry and Fire Protection’s (CAL FIRE) Fire and Resource Assessment Program

(FRAP).3 Figure 1 presents annual wildfire counts and area burned from 2000 to 2021.

The average annual number of wildfires was 447 in 2020 to 2021, compared with 314 from

2000 to 2019 (Panel a), an increase of 42.4%.4 Similarly, the annual average of 3,347,473

acres burned in 2020 and 2021 (Panel c) was more than 5 times the annual average during the

prior two decades.5 Finally, the distribution of fire burn areas from 2000 to 2021 (Panel c)

shows a right-tailed skew, similar to that found by Diaz (2022) for the entire western U.S .

To further underscore the distributional characteristics of the fire sizes, Figure 2 shows

a QQ-plot of the quantiles of the burned areas against i) a Pareto distribution with shape

parameter 0.8 (Panel a); and ii) an exponential distribution with rate parameter 1 (Panel b) .

The figure shows that the wildfire-size quantiles almost perfectly match those of the Pareto

distribution with shape parameter of 0.8 — a heavy-tailed distribution. In contrast, the

plot of the same data against the (thin-tailed) exponential distribution lies far from the

45-degree line. Given the usual caveats of interpreting the graphical results of QQ-plots

on finite samples, the plots of Figure 2 suggest that the California historical wildfire size

distribution is likely to be characterized by a heavy tailed distribution such as the Pareto.

1See MacDonald et al. (2023); Safford et al. (2022).
2See https://www.fire.ca.gov/media/4jandlhh/top20$_$acres.pdf.
3The Fire and Resource Assessment Program (FRAP) distributes annual wildfire perimeter data sets for

all public and private lands in California. CAL FIRE defines vegetative wildfires as burning a minimum area
of 10 acres for timber fires, 30 acres for brush fires, and 300 acres for grass fires. The GIS data is developed
with the cooperation of the United States Forest Service Region 5, the Bureau of Land Management, the
National Park Service and the Fish andWildlife Service (see https://www.fire.ca.gov/what-we-do/fire-
resource-assessment-program/fire-perimeters).

4Looking further back, Buechi et al. (2021) found that the number of fires over the decade from 2009 to
2018 was 1.4 times the per-decade average between 1979 and 2009.

5Buechi et al. (2021) also found that the 7.08 million acres burned in the decade from 2009 to 2018 was
1.6 times larger than the per-decade average since 1979, and more than twice that from 1979 to 1988.

1

https://www.fire.ca.gov/media/4jandlhh/top20$_$acres.pdf
https://www.fire.ca.gov/what-we-do/fire-resource-assessment-program/fire-perimeters
https://www.fire.ca.gov/what-we-do/fire-resource-assessment-program/fire-perimeters


(a) Annual wildfire counts (b) Annual area burned (millions of acres)

(c) Distribution of burn areas

Figure 1: Frequency and size of California wildfires, 2000–2021. The wildfire inci-
dence and burn area data are sourced from the California Department of Forestry and Fire
Protection (CAL FIRE) (see https://www.frontlinewildfire.com/wildfire-news-and-
resources/california-wildfires-history-statistics/).
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Thus, following Cooke et al. (2014), reliance on the historical average of wildfire sizes, which

has been the policy of the California Department of Insurance under Proposition 103 since

1989, would not be sufficiently informative for future predictions.

(a) Pareto Distribution (b) Exponential(1) Distribution

Figure 2: Historical fire burned area shows a heavy-tailed distribution. We con-
struct two QQ plots of all CAL FIRE identified fire burned areas between 2000 and 2021.
The left figure is plotted against the theoretical quantiles of a Pareto distribution with
shape parameter 0.8, which is a heavy-tailed distribution with infinite mean and variance.
The right one is plotted against an exponential distribution with rate parameter 1, which is
a thin-tailed distribution.

These results also suggest potential challenges to accurate statistical forecasting of California

wildfires, for methods to diversify and securitize wildfire risks, for reserve strategies under

Value-at-Risk management regimes, and for the design of risk management strategies due

to spatial dependencies that affect many people, properties, and insurance lines simultane-

ously (see Abatzoglou and Williams, 2016; Joseph et al., 2019; Kousky, 2019; Kousky and

Cooke, 2009; Li and Banerjee, 2021). As Kousky and Cooke (2009) and Cooke et al. (2014)

point out, climate-change-related risk distributions such as these often have very small—even

undetectable—correlations between variables,6 they have heavier tails in which the probabil-

ities of ever more serious damage decrease slowly relative to the extent of the damage, and

tail dependencies in which bad outcomes are more likely to occur together. Some research

6The existence of global correlations can arise when every variable is correlated with some latent variable
such as temperature or the effects of El Niño on the Pacific Ocean (see Flannigan et al., 2016; Voosen, 2024).
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suggests that climate change may be directly fattening the tails of the distributions of many

extreme events (Cardil et al., 2021; Koh et al., 2023).7

High temperatures and low precipitation play an important role in enhancing the flamma-

bility of vegetative fuels. Figure 3 shows the maximum annual temperature for the West

Climate Region in the U.S. from 1895 to 2023, where a pronounced long-run increase can

be seen. The current consensus view among climate scientists is that increasing global and

regional temperatures increases of about 1.1°C (2°F) since 1980 are largely attributable to

anthropogenic greenhouse gas emissions (Burke et al., 2021; MacDonald et al., 2023; Safford

et al., 2022; Williams and Abatzoglu, 2016).
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Figure 3: Maximum annual temperature. The red line shows the annual maximum
temperature for the West Climate Region between 1895 and 2023 from the National
Oceanographic and Atmospheric Administration (see https://www.ncei.noaa.gov/

access/monitoring/climate-at-a-glance/regional/time-series), with LOWESS
trend line (Cleveland, 1979) in blue.

Although there is a large statistical literature investigating these and other factors af-

fecting wildfire risk, much of this literature uses logistic regression or related extensions (Xi

et al., 2019). While machine-learning models have been used, their application is mainly lim-

ited to cross-sectional and short-run time-series forecasting applications (see Casolaro et al.,

2023; Chen et al., 2023; Makridakis et al., 2023). In this paper we estimate wildfire risk using

spatiotemporal Convolutional Neural Networks (CNNs), a technique that has been used in

7See also the research goals of The U.S. Global Change Research Program 2022–2031 Strategic
Plan (https://downloads.globalchange.gov/strategic-plan/2022/USGCRP_2022-2031_Decadal_
Strategic_Plan.pdf).
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other fields such as image recognition and traffic flow forecasting, but has not previously

been applied to climate modeling. CNNs are particularly useful in our setting because they

capture both spatial patterns and temporal dependencies and effectively identify correlations

between neighboring data points in a time series. We find that CNN significantly outper-

forms logistic regression in estimating the likelihood of wildfire at a given point in space and

time. Combining our fire-likelihood estimates with measures of the value of houses in each

area, we next estimate expected annual fire-related property losses for each area. We find

enormous variation across different areas, and a total estimated expected loss for 2021 that

closely matches the actual costs of fires in that year.

The paper is organized as follows: Section 2 presents a discussion of the wildfire-related

risks currently facing property and casualty insurance companies in California. Section 3

discusses the current state of wildfire modeling and presents our spatiotemporal CNN model.

Section 4 discusses the data used in our analysis. Section 5 compares estimation results using

CNN with those from logistic regression and calculates expected property losses in the state.

Section 6 discusses recent problems faced by the insurance company State Farm in light of

our estimation results, and Section 7 concludes.

2 Property and casualty insurance and wildfire risk

The California property and casualty insurance industry is facing significant wildfire-related

challenges. For an insurance company to stay solvent, it must have access to enough capital

to pay losses even in catastrophic years. For non-disaster lines of insurance, such as auto-

mobile insurance, the premiums in any given year are usually enough to cover claims from

that year. For fire insurance, however, claims may greatly exceed annual revenue, due to the

heavily skewed burn area distribution shown in Figure 1.8 Property and casualty insurance

firms underwriting wildfire risk in California must solve an intertemporal smoothing prob-

lem to cover their catastrophic loss years (see Jaffee and Russell, 2013). The likelihood of

very significant losses associated with California wildfires, especially in the last five year, has

required property and casualty insurance companies to build up reserves, purchase reinsur-

ance, and use other insurance-linked securities to be able to pay their claims in high damage

years (see Goss et al., 2020; Opitz, 2023). As shown in Figure 4, loss ratios for fire peril were

significantly impacted by the heavy wildfire-loss years of 2017 and 2018. Only at the end of

2019, after two straight years of insurers paying out $1.85 in losses for every $1 of premium

8For example, in 2018 the California insurance industry collected $939,112,586 in property insurance
premia and paid out $1,534,083,985 in incurred losses, a 164.22% loss ratio (https://www.insurance.ca.
gov/01-consumers/120-company/04-mrktshare/2021/upload/PrmLssChartHistorical2021wa.pdf).
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earned, did the California Department of Insurance approve 71 rate-increase requests from

50 different companies.9

There are also other internal capital market challenges for property casualty insurance

companies that hinder solutions to their intertemporal smoothing problem. U.S. accounting

requirements preclude earmarking capital surplus to a specific risk and current tax provision

require that retained earnings are taxed as corporate income at set aside Jaffee and Russell

(2013). Additionally the accumulation of capital holdings to preclude losses in particularly

catastrophic future years, make these companies very susceptible to takeover risks. Another

challenge has been the refusal of the California Department of Insurance to allow the inclusion

of reinsurance costs in the calculation of premia for wildfire insurance.10 As a result of these

on-going challenges, between 2012 and 2022 California homeowners insurance companies

performed significantly worse than the national average on key risk metrics such as the

direct incurred loss ratio which was 73.9% compared to the U.S. average of 59.7% and the

average direct underwriting profit of −13.1% as compared to the U.S. average of 3.6%.11

Rate setting limitations are another major challenge for the long-term viability of home-

owner fire casualty insurance in California. In 1988, California voters passed Proposition 103,

which required insurance companies to receive “prior approval” from the California Department

of Insurance (CDI) before implementing property and casualty insurance rates. As shown

by Oh et al. (2024), casualty insurance rates in states like California with high regulatory

frictions have not adequately adjusted in response to the growth in losses. In addition,

California state insurance regulations require wildfire insurers to set rates for future annual

catastrophic coverage as the fraction of damages accrued from the 20-year historical mean

rather than statistical, or actuarial, models. Additionally, the CDI does not allow for the

costs, or changes in the cost, of reinsurance risk to be included in insurer rate requests. As a

result, California’s annual rates now rank next to the lowest in the U.S. (see Oh et al., 2024),

perhaps threatening the future ability of California homeowners to successfully rebuild and

continue to make their mortgage payments after large and destructive wildfires.12

On September 21, 2023 California Governor Gavin Newsom issued an Executive Order

to authorize the State Insurance Commissioner, Ricardo Lara, to exercise his authority to

9See https://www.insurance.ca.gov/0250-insurers/0800-rate-filings/0100-rate-filing-

lists/rate-filing-approvals/rate-filing-approvals-yearly.cfm.
10See California Code of Regulations. Title 10. § 2644.25. Reinsurance (https://govt.westlaw.com/

calregs/Document/).
11http://insurance.ca.gov/0400-news/0100-press-releases/2023/upload/California-s-

Sustainable-Insurance-Strategy-slides.pdf
12Since 2022, AIG and Chubb have left the high-value home insurance market. State Farm, Farmers,

Allstate, USAA, Travelers, and Nationwide have all either limited or paused writing new policies (see https:
//www.insurance.ca.gov/01-consumers/180-climate-change/SustainableInsuranceStrategy.cfm).
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Figure 4: Realized loss rates (fire peril) for California Property and Casualty insurance
companies. Source: https://www.insurance.ca.gov/01-consumers/120-company/04-

mrktshare/2022/upload/PrmLssChartHistorical2022.pdf

stabilize California’s property insurance markets.13 At the same time, the CDI introduced

the California Sustainable Insurance Strategy, which will allow insurance carriers in the

future to apply forward-looking catastrophe models to more accurately assess and price

climate-related risks in exchange for expanded property insurance coverage in risky areas.14

The insurance commissioner’s office is currently in the process of developing regulations for

how exactly the new models can be used for rate setting in the future and who will vet these

models.15

Boomhower et al. (2024) provide a rough summary measure of the relative granularity

or complexity of the pricing algorithms used by California Homeowners Insurance compa-

nies. Given the available data on the models, they build a measure of model complexity, by

counting the number of risk-rating variables that each insurer uses to assess the likelihood

of wildfire damages for specific home locations. They find that some California insurers

price wildfire risk using zip-code-level territory factors and others use parcel-level categorical

13https://www.gov.ca.gov/wp-content/uploads/2023/02/Feb-13-2023-Executive-Order.pdf.
14https://www.insurance.ca.gov/01-consumers/180-climate-change/

SustainableInsuranceStrategy.cfm.
15https://www.politico.com/news/2023/09/21/newsom-orders-action-on-wildfire-insurance-

00117488.
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wildfire risk scores based on qualitative factors such as slope, vegetation, fuel load, and road

access. The larger insurers use more granular measures generated by using probabilistic

catastrophe models. Overall, it is the firms with the largest market share in high-hazard

zip codes that use the most granular risk segmentation. They argue that the observed het-

erogeneity in California insurance price/risk modeling primarily reflects. the direct costs of

licensing or developing state-of-the-art wildfire models. These costs together with the indi-

rect costs of adoption include adapting the firm’s internal systems and employing professional

staff can run into annual costs of millions of dollars (see Jergler, 2021).

The effects of Proposition 103 and the California Department of Insurance’s historical

reluctance to allow probabilistic models to justify firm-level requests for rate increases, have

led to the significant heterogeneity in the current state of statistical rate-setting technol-

ogy found by Boomhower et al. (2024). The new policies of the California Department of

Insurance should allow more active competition among firms to develop state-of-the-art wild-

fire modeling technology for wildfire rate pricing at the property level. The current challenge

is that firm-level development of these newly allowed probabilistic wildfire risk models and

the regulatory vetting of the models is unlikely to be fully completed by December 2024.

3 Wildfire modeling

The study of wildfire occurrence has led to a large statistical literature (for an overview

see Oliveira et al., 2021; Prestemon et al., 2013; Xi et al., 2019) and a growing machine-

learning literature (see Cruciata et al., 2024; First Street Foundation, 2022; Koh et al., 2023;

Opitz, 2023) focused on identifying risk factors and producing risk maps or indices.16 These

modeling strategies are best suited to the investigation of general trends across wildfires as

a function of features that are predictive of when and where wildfire ignitions occur.

The biophysical variables found in occurrence models are intended to causally explain

why wildfire ignitions vary across space and time as the result of temporal and spatial

variations in weather, climate, vegetative land coverage, and topography (see Brinkmann

et al., 2022; First Street Foundation, 2022; Kearns et al., 2022; Prestemon et al., 2013). Other

common variables used in statistical occurrence modeling include anthropogenic features that

affect the rising risks of wildfire due to the interaction of human activity and climate (see

Abatzoglou et al., 2018; Abatzoglou and Williams, 2016; Apt et al., 2023; Williams and

Abatzoglou, 2020; Williams and Abatzoglu, 2016) as well as the effects of the increasing

16An even more recent literature, focused on physics-informed machine learning, has provided accurate and
efficient ways of recognizing complex patterns and predicting spatiotemporal weather and climate processes
that obey fundamental laws governing physical systems (Kashinath et al., 2020; Seydi et al., 2024).
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encroachment of urban development into the wildland urban interface (see Alexandre et al.,

2016; Kestelman, 2024; Price and Bradstock, 2014; Radeloff et al., 2018).

Historically, the most commonly used form of wildfire occurrence modeling has been lo-

gistic regression models or related extensions such as logistic generalized additive models

(Xi et al., 2019). More recently, machine learning models such as gradient boosted random

forest, neural networks, deep neural network, multi-layer perceptrons, and (for image analy-

sis) convolutional neural networks (see Alkhatib et al., 2023; Ismail and Amarasoma, 2023;

Jain et al., 2020; Tong and Gernay, 2023) have been used for wildfire occurrence modeling.

However, other than the physics-informed machine learning models, the current generation

of machine learning methodologies are limited to cross-sectional and short-run time-series

forecasting applications (see Casolaro et al., 2023; Chen et al., 2023; Makridakis et al., 2023).

3.1 Standardization of the wildfire event space

Among climate scientists, the presence or absence of wildfire occurrence is measured over

discrete space-time cells, called voxels, that are projected onto the earth’s surface. The cell

centroid is precisely defined at the latitude and longitude of the centroid location and the raw

weather and climate data are usually measured as satellite-data projections to the centroids.

Other measures such as vegetative land cover, urban density, or infrastructure measurement

are also standardized to cell-level representations so as to harmonize the different spatial-

temporal scales of wildfire and predictor data such as weather conditions, land cover and land

use (Abatzoglou, 2013; Koh et al., 2023). Currently available climate space-time cells are

sized at 4 km × 4 km or less for the dynamic hourly or daily climate and weather measures.

The static predictors related to vegetative land coverage, topography, and housing density

and electricity transmission lines among other measure are available at raster, or pixel levels,

so that they can be easily merged to the cell data.

Given the ready availability of economic and demographic indicators at the census tract or

zip-code level, several recent papers in the economics literature also use measures of wildfire

occurrence at the zip-code or census-tract level (see Biswas et al., 2023; Kahn et al., 2024).

A first concern with the use of census tracts or zip codes for wildfire occurrence measurement

is that zip codes and census tracts are based on population not geography. The use of zip

codes is especially a problem in California, where the average zip code is 60.12 square miles,

the largest zip code is 1,773 square miles, and the smallest is 0.01 square miles. Additionally,

zip codes are not spatially or temporally consistent with climatological, topographical, or

vegetative measurement (see Abatzoglou, 2013). Secondly, any county-level or zip-code-

level predictions may suffer from inaccuracy, because they will either incorrectly assume the
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entire area is burned, or rely on historical fire sizes that as shown in Section 1 are likely to

be heavy-tailed. This again supports our choice of conducting cell-level predictions, because

predicting cell by cell can avoid using direct historical estimates of the fire size.

3.2 Convolutional Neural Networks

Spatiotemporal CNNs (Convolutional Neural Networks) are well suited to short-term fore-

casting problems due to their ability to automatically extract important spatial and temporal

features from data without relying on hand-crafted features (Casolaro et al., 2023). Common

applications of these models include still-image recognition and action recognition in videos

(see Tran et al., 2018). The models have also been successfully applied to address the spatial

correlations, temporal correlations, and heterogeneity of the traffic flow data used to forecast

urban traffic congestion (Guo et al., 2019) and to the satellite detection of canopy-scale tree

mortality and survival from California wildfires (see Dixon et al., 2023). However, to our

knowledge they have not previously been applied to modeling the occurrence of wildfires.

Spatiotemporal CNN models are designed to capture spatial patterns. They are also

effective in modeling temporal dependencies and identifying correlations between neighboring

data points in a time series, just as they can recognize objects in images by analyzing

patterns in pixel values. By applying 3-dimensional convolutional filters across both space

and time, spatiotemporal CNNs can learn the motion patterns in time series data and fully

use those patterns to account for how past values influence future predictions. Factorizing 3-

dimensional convolutions into spatial and temporal components can further enhance accuracy

and efficiency leading to lower training and testing errors (Sra, 2019).

An additional advantage of 3-dimensional CNNs is that they can introduce nonlinearities

into the network, thus allowing for the complex functions that are needed to accurately model

the joint spatial correlations and temporal dynamics of wildfire prediction. Another strength

of the models for wildfire occurrence modeling is that they easily handle the cell adjacency

correlation structure of wildfire — since if there is a wildfire in one cell location nearby cell

locations are likely to also have wildfires. These CNNs also allow for the temporal aggregation

of some wildfire features by accounting for the cumulative effects of phenomena such as

maximum temperature and vegetative dryness on the cell-by-cell occurrence of wildfires.

Another important strength includes the benefit of regularization. The fitted values from

spatiotemporal CNNs are by nature correlated in space and time, which helps to prevent over-

fitting even with a high-dimensional nonlinear parameter space. They are also parsimonious

because the weight parameters are shared across space and across time, thus significantly

reducing model complexity. Finally, a weighted loss function can be applied to treat the
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severe data imbalances that exist in most wildfire data arrays over time and space.

For our application of spatiotemporal CNNs, we are forecasting one year ahead to 2021,

since the typical maturity of an homeowners insurance contract is annual. However, longer-

run out-of-sample forecasting remains a limitation for applications of spatiotemporal CNN

to longer term contracting. Another potential drawbacks of using spatiotemporal CNN

is that the model needs to be slightly customized to prohibit the use of future temporal

features to forecast future wildfire occurrences. However, as will be discussed below, overall

spatiotemporal CNNs offer a powerful approach to time-series forecasting, particularly for

tasks where capturing both spatial and temporal dependencies is crucial. Their ability to

automatically learn relevant features from raw data, combined with the flexibility offered

by different spatiotemporal convolutional designs, makes them a valuable tool for predicting

future values in various time-dependent domains.

3.3 A spatiotemporal CNN model

Suppose we are given a panel dataset {(Xit, yit)}i∈I,t∈T , where yit is the dependent vari-

able observed for location i at time t and Xit = (x1
it, x

2
it, · · · , xk

it)
′ is the corresponding

k-dimensional vector of explanatory variables. I and T denote the sets of location and

timestamps, respectively. Assume we have N locations in total, i.e., |I|= N . This is a

common data structure in many location-based studies, such as real estate, climate, trans-

portation, etc. For generalization purposes, we do not make specific assumptions about the

data types of yit. It can be either binary if it is a classification problem or continuous if it is

a regression problem. Generally, we are trying to model the target variable yit as a function

of {Xis}i∈I,s≤t, which contains all historical information across space up to time t.

Notation Stack the data across locations and define

• yt = (y1t, · · · , yNt)
′, an N × 1 vector whose i-th entry is yit for location i,

• Xt = (X1t, X2t, · · · , XNt)
′, an N ×K matrix, whose i-th row is a k-dimensional vector

of characteristics for location i.

Now further stack the data across time and define

• y = (y1,y2, · · · ,yT )
′, a T ×N matrix,

• X = (X1,X2, · · · ,XT ), a tensor with dimension T ×N ×K.
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3.4 Spatial and temporal dependence

Intuitively, the simplest model to start with is OLS for regression or logistic model for binary

classification, where we assume all observations across space and time are independent and

simply use the cross-sectional variations to fit yt for any t ∈ T .

yt =

σ(β01+Xtβ + εt) if classification,

β01+Xtβ + εt if regression,

where σ is the sigmoid function applied element-wise to the vector input, 1 is a vector of

ones, β is the vector of coefficients, and εt is a vector of independent errors.

(a) Spatial dependence (b) Temporal dependence

Figure 5: Visualizing the potential dependence structure in a spatiotemporal
dataset. The yellow cell refers to a target location-time, whose yit is our modeling goal. In
addition to the yellow cell’s own observations Xit, the characteristics of its nearby red cells
are assumed to have an effect on the modeling goal as well, which will lead to spatial and
temporal dependence. The red cells in Figure 5a are called the “spatial lags,” while those
in Figure 5b are the usual lags in time series. The remaining blue cells are assumed to have
no impact on the yellow cells. In Figure 5b, each big square represents a slice of the panel
data at a particular time.

Figure 5 demonstrates the potential dependence structure in space and time for a spa-

tiotemporal panel dataset. Taking the wildfire as an example, at each time t the maximum

temperatures in location i’s nearby cells could also contribute to the wildfire occurrence in

location i through the flow of air, which is the spatial dependence plotted in Figure 5a. In

spatial econometrics, the nearby influencing cells all called “spatial lags.” In comparison,

Figure 5b plots the usual “lags” to show temporal dependence, which means in location i the
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maximum temperatures of the past few days or weeks could impact the wildfire occurrence

at time t as well, because of the accumulated heat over time. One difference between the

spatial and temporal dependence is that the spatial dependence does not have any specific

direction, while the temporal dependence must be one-directional, meaning that only past

values can affect the future, but not the other way round. However, in space any direction is

allowed. There could exist the interaction of spatial and temporal lags too, as demonstrated

in Figure 6. In short, this means the spatial lags of the temporal lags, or equivalently, the

temporal lags of the spatial lags, might also affect our target location-time.

Figure 6: Interactive spatial and temporal dependence. Again, the yellow cell repre-
sents our target location, and the characteristics of red cells affect the target location’s yit as
well. For convenience, we plot only the cells which matter for the target location. Obviously,
they are either spatial lags (as in time t) or the spatial lags of the temporal lags (as in time
t− 2 and t− 1).

To sum up, the analysis above suggests that when dealing with spatiotemporal datasets,

it is essential for the model to capture the dependence across both space and time. In the

next two subsections, we will review several classical econometric models that are designed

to deal with these potential dependence, and then explain how CNN corresponds to better

versions of these models.

3.5 Finite distributed lag model and 1-d convolution

In time series econometrics, the finite distributed lag (FDL) model is designed to include

lagged explanatory variables to fully account for delays in the explanatory variables.

13



yt =

σ(β01+Xtβt +Xt−1βt−1 + · · ·+Xt−qβt−q + εt) if classification,

β01+Xtβt +Xt−1βt−1 + · · ·+Xt−qβt−q + εt if regression,

where q < ∞ is the order of lags, Xt−1, · · · ,Xt−q are lagged explanatory variables that are

added to capture the temporal dependence, βt−1, · · · ,βt−q are the corresponding coefficient

vectors for different lags, and εt is the independent error term vector.

The idea of including lagged explanatory variables, as in the FDL model, can be perfectly

replicated by an 1-d convolutional neural network (CNN). Figure 7 graphically shows how a

filter in the 1-d convolutional layer works. We fix an arbitrary location cell i, and describe

its observed K features as a K-dimensional time series. For each feature, or equivalently,

“channel” in CNN’s terminology, applying the 1-d convolution can be considered as calcu-

lating weighted moving averages over a constant window. This moving window is called

a “kernel”, whose weights are the CNN parameters that will be learned by training. The

kernel size is a hyper-parameter that can be tuned via validation. Different kernel sizes are

equivalent to different order of lags q in the FDL model. For convenience, we usually choose

an odd number as the kernel size, so that for every moving average we will have a unique

median cell as the target output cell, and the number of cells around the median cell will be

the same on both sides.

The 1-d convolution is conducted channel by channel for all features. The convolutional

outputs will then be linearly combined. The only difference between the 1-d convolutional

filter and the FDL model is that a non-linear activation function relu will be applied to the

final output to enhance model complexity. Mathematically, a filter in the 1-d convolutional

layer can be described as below. Assuming that the kernel size is p, then for each cell i,

yit = relu

(
β0 +

K∑
k=1

βk

p∑
l=1

wk
l x

k
it−L+l

)
,

where L = (p + 1)/2 is a constant given p, xk
it represents the k-th explanatory feature in

location i at time t, and {wk
l }l=1,...,p are the kernel weights for the k-th channel.

With the default convolutional setting shown above, one might be concerned about a

looking-ahead problem in the convolution, meaning that future values of the explanatory

variables are involved in the convolution. To make sure that the temporal dependence is

one-directional, we shift the filter output backward, as Figure 8 demonstrates. If we shift

the output backward by L− 1 cells, we can guarantee that for each moving window, the last

time cell in the convolution happens to be the target cell. However, note that Figure 8 is just

a conceptual visualization. In practice, one needs to shift the time series of the dependent
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Figure 7: An example of a filter in the 1-d convolutional layer. In this figure, we use
kernel size 3, which is arbitrarily chosen, as an example to show how a filter works in the 1-d
convolutional layer. Note that each cubic or square cell represents a timestamp t. At the
top we plot the original k-dimensional time series, where each dimension corresponds to a
feature or an input “channel” in the CNN. Each channel is associated with a specific kernel,
which can be understood as the convolutional weights applied to that channel. Specifically,
the 1-d convolution is conducted by taking the inner product of the 3 × 1 kernel and the
channel value of three consecutive cells, on a rolling basis across the entire channel, from
left to right. We use the same color to keep track of the same timestamp t. For example,
the value of the yellow cell in output channel 1 is the inner product of the kernel 1 vector
and the closest 3 cells to the yellow cell, including itself, in the input channel 1 (marked by
dashed lines). In other words, the central cell in the convolution is always the target cell.
For simplicity, this figure plots only 1 filter, so the filter output has only 1 dimension. But
in practice there could be a number of filters. The output of all filters will be stacked to
form a multi-dimensional time series, which then becomes the input of the next layer in the
neural network.
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variable to match the time horizon. With the filter output being shifted, we can then rewrite

the 1-d convolution formula as

yit = relu

(
β0 +

K∑
k=1

βk

p∑
l=1

wk
l x

k
it−p+l

)
.

Figure 8: Customize the 1-d convolution to avoid looking ahead. In this figure,
we conceptually demonstrate how to shift the convolution output so that we can avoid
using future values of explanatory variables for estimation. Each cubic or square denotes a
timestamp, and we use the same color to keep track of the same timestamp. Take the yellow
cell as an example. Before shifting the output, the convolution will involve the blue cell,
which is a future time. But after we shift the output backward, the target cell/timestamp
of the same convolution changes to the blue one. The number of periods to shift backward
will depend on the kernel size.

The 1-d convolution applies to the time dimension. Because it keeps different locations

independent, we can simply stack the outputs across different locations.

yt = relu (β01+XtWpβ +Xt−1Wp−1β + · · ·+Xt−p+1W1β + εt) ,

where Wl = diag(w1
l , w

2
l , · · · , wK

l ) is a diagonal weight matrix, and β = (β1, · · · , βK)
′ is the

coefficient vector. Note that the above formula is exactly in the same form as the FDL

model in time series econometrics, except for two small differences. First, the order of lags

in the FDL model q differs from the kernel size p by 1, but this is simply because of different

definitions. Second, in the 1-d CNN model, an additional non-linear activation function relu

is added to the output.
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3.6 Spatial econometric models and 2-d convolution

Several spatial econometric models are proposed to deal with spatial dependence concerns,

such as the spatial cross-regressive model (SLX), spatial lag model (SLM) and spatial error

model (SEM). In this subsection we will briefly review these classical models, and we will

explain how the CNN model could capture these models.

For all spatial econometrics, we will start with a N ×N weight matrix W = {wij}i,j∈I ,
where wij represents the weight that we impose on location j when target location is i.

Hence, the i-th row of WXt corresponds to the weighted characteristics of the nearby cells

for location i, i.e., the spatial lags of location i. Note that here W needs to be determined

ex-ante.

• Spatial cross-regressive model (SLX)

In SLX, we introduce the spatially lagged exogenous regressors to the model, assuming

that the spatial dependence can be captured by the spatial lags in the explanatory

variables, namely WXt.

yt =

σ(β01+Xtβ +WXtγ + εt) if classification,

β01+Xtβ +WXtγ + εt if regression,

where the additional term WXtγ will control for the effects of spatial lags, and γ

are the corresponding coefficients. When γ = 0, SLX will degenerate to an OLS

model. Obviously, this method has drawbacks because the weight matrix W needs to

be determined ex-ante. Although in most cases we can assume closer places should

have higher weights, we are uncertain about the rate of spatial decay. On the other

hand, even after controlling for the observed characteristics of spatial lags, we still have

to conduct additional test to examine whether the spatial dependence is fully captured

by W . The advantage of SLX lies in that it is both conceptually and computationally

easy, because the spatial lag variables can simply be treated as additional regressors.

Hence, at least for the dependent variables with continuous values (i.e., for regression

problems), this model can easily be estimated by OLS.

• Spatial lag model (SLM)

Similar to SLX, we also use spatial lags to capture the spatial dependence in SLM.

However, we switch from WXt to Wyt, assuming that the dependence manifests

directly in the dependent variable. Geometrically, adding an autoregressive covariate

corresponds to a ripple effect. In contrary to SLX where we usually assume only nearby

cells matter, in SLM even if start with a few nearby cells, the spatial dependence could

end up spreading much more widely in space, through cascades of lag effects. The rate
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of spatial decay depends on the parameter ρ.

yt =

σ(β01+Xtβ + ρWyt + εt) if classification,

β01+Xtβ + ρWyt + εt if regression.

• Spatial error model (SEM)

yt =

σ(β01+Xtβ + ut) if classification,

β01+Xtβ + ut if regression,

ut = λWut + εt

If we assume the spatial dependence is mainly due to some spatially correlated omitted

variables, we can model it through the error terms. Specifically, we can apply a spatial

version of autoregressive model on ut, by assuming the error terms depend on their

spatial lags Wut. Hence, the parameter λ controls the spatial decay rate, and εt is

still the i.i.d noise.

In both SLM and SEM, there exists a spatial autoregressive component, which will cause

fairly high computational cost. For example, when yt has continuous values, then to obtain

the closed form solution for estimators we will have to invert a large matrix (I − ρW )−1 in

SLM or (I −λW )−1 in SEM, both of which have an N ×N dimension. When yt is a binary

variable, this would be even more complicated because of the additional sigmoid function.

In this sense, SLX seems computationally much cheaper.

There is a clear tie between SLX and the 2-d CNN model, in the sense that CNN is one

instance of SLX with 1) a particular form of weight matrix and 2) additional nonlinearity.

Figure 9 demonstrates a specific example of a filter in the 2-d convolutional layer. First, a

filter consists of K “kernels,” where K equals the number of covariates, or “channels,” in the

original data. For each kernel of size k, it represents a specific weight matrix, assuming that

only the k × k nearest cells matter and farther away cells will have zero weights. Clearly,

the size of spatial lags is determined by the kernel size k, which is a hyperparameter in this

model. Second, the weights are shared across space. For each target location, we compute

the convolution by taking the inner product of the characteristics observed in its k2 closest

cells and the kernel, which is equivalently the spatial lags in SLX. Since we use the same

kernel for all locations, this will remarkably decrease the number of parameters from |L|2 to
k2. Third, different kernels work independently, and the convolutional results are combined

linearly, with a nonlinear activation function relu. Last, Figure 9 demonstrates only one

filter. Actually one convolutional layers could have several independent filters, and all of the
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convolutional results will be passed to the next layer, which works jointly for the estimation.

Figure 9: An example of a filter in the 2-d convolutional layer. This figure shows an
example of a filter in the 2-d convolutional layer, consisting of K kernels of size 3× 3. The
original cross-sectional data can be viewed as a map, where each cell represents a specific
location. The data has K features, which are called K input channels. From left to right,
we plot the original map, the kernels, the resulting maps (i.e., the output channels) and
the final output of this filter. A kernel is associated with a specific weight matrix and its
corresponding channel. The colors in the initial map and the channels match with each
other. For example, the value in yellow cells are calculate by taking the inner product of the
3× 3 yellow area in the initial map and the weight matrix. Note that the central cell of the
3× 3 yellow area is our target location.

Mathematically, a 2-d convolutional filter in NN can be written as

yit = relu

(
β0 +

K∑
k=1

βk

N∑
j=1

wk
ijx

k
it

)
,

where relu is a function that is widely used in neural networks to allow for nonlinearity.

Besides, xk represents the k-th covariate/channel, and wk
ij represents the kernel weight on

location j when the target location is i. Note that wk
ij = 0 when cell j is out of the kernel

coverage when we position the kernel to be centered at cell i. In other words, cell j will

receive a non-zero weight only when it is close enough to the target cell i so that it could be

covered within the kernel.

To see the connection between SLX and the CNN more clearly, we can re-write the
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equation above as a spatial cross-regressive model with some nonlinearities. That is,

yt = relu
(
β01+Wf ◦Xtβ

)
= relu

(
β01+Xtβ + (Wf − I) ◦Xtβ

)
,

where Wf = [W 1, · · · ,WK ], which is a 3-d tensor of size K × N × N that represents a

collection of K kernels for filter f , one for each covariate/channel. relu is applied element-

wise to inputs of size N , and (Wf − I) ◦Xt is defined as

(Wf − I) ◦Xt =
[
(W 1 − I)Xte1, (W

2 − I)Xte2, . . . , (W
K − I)XteK

]
,

where ek is a one-hot vector that has value 1 in its k-th entry and 0 anywhere else. Therefore,

Xtek simply extracts the k-th column of Xt, which is the collection of the k-th covariate for

all N locations. As demonstrated in Figure 9, we use the k-th kernel W k to compute the

spatial lags for the k-th explanatory variable. We deduct the identity matrix to separate out

the original covariates and the spatial lags. For each weight matrix W k, although its size is

N ×N in this representation, its degree of freedom is in fact the kernel size k × k, because

the weights are shared across space.

Clearly, the convolutional filter is in essence an advanced version of SLX. First, compared

with a fixed weight matrix in SLX, a convolutional filter allows for different spatial weights

for different covariates. Second, weights are shared across space in the filter, which greatly

reduces the degree of freedom from N × N to k × k, and hence saves a lot of computa-

tional costs. Third, in SLX the weights are determined ex ante, while in the convolutional

filter the weights are learned from the data, jointly with other parameters. Additionally,

a convolutional layer is much better than SLX in terms of the model expressivity. On one

hand, a nonlinear component, namely the relu, is added to the filter. On the other hand,

a convolutional layer could have several independently working filters, which could capture

different characteristics of the original data and jointly work for the estimation.

3.7 Wildfire forecast model

In the previous two subsections, we explained how 1-d and 2-d CNN models can capture the

temporal and spatial dependence respectively. Intuitively, for a spatiotemporal prediction

task, we will need a 3-d model to perform convolution on the spatiotemporal lags. In this

subsection, we will describe the setup details of our spatiotemporal wildfire forecast model.

One main challenge in this forecast problem is how to make annual predictions based

on daily meteorological data. Because most homeowner insurance contracts are annual, to
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Figure 10: Spatiotemporal CNN: Branching structure for dynamic and static mea-
sures: Input 1: includes the daily meteorological measures at each cell; Input 2 includes the
fixed cell features such as topography and vegetative coverage

price them on a daily basis, on each day we have to dynamically forecast the fire probability

of the next 365 days. To solve this problem, we aggregate the fire occurrence over the next

365 days, and choose the daily meteorological data of the previous 365 days xit−364:t as the

predictors for location i. We define our prediction target as below.

yit =

1 if a wildfire occurs in location j between day t+ 1 and t+ 365,

0 otherwise.

In terms of the predictors, as Figure 10 shows, we divide them into a time-varying

group and a time-invariant group. The time-varying group includes all daily meteorological

features, such as the max temperature, relative humidity and wind events, based on which we

could compute the fire potential dynamically for each location. On the other hand, the time-

invariant group consists of fixed effects that are associated with the general flammability of

each location, including its topological features, vegetation conditions, electrical lines, utility

providers, etc. We will discuss these predictors in detail in Section 4 below. Generally, this

branching structure reflects the fact that the wildfire occurrence is the joint effects of dynamic

weather conditions and static location flammability.

We apply CNN of different dimensions to the two predictor groups. For each day t, the

daily meteorological features from the past 365 days are 3-d panel data of dimension 365×
N×K1, where N is the number of locations and K1 is the number of time-varying predictors.
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In comparison, the static features are simple cross-sectional data of dimension N×K2, where

K2 is the number of time-invariant predictors. To account for both spatial and temporal

dependence, a spatiotemporal 3-d CNN is designed for the dynamic daily meteorological

data. Figure 11 plots an example of the 3-d CNN structure. For each location-day, the

figure describes how we use the weather data of the past few days from its surrounding cells,

including itself, to forecast the fire potential. For one filter in the 3-d convolutional layer,

we estimate

zit = relu

(
β0 +

K1∑
k=1

βk

p∑
l=1

N∑
j=1

wk
lijx

k
it−p+l

)
,

where zit is the fire potential of cell i at day t, p is the size of temporal convolution, and

wk
lij is location j’s kernel weight on location i, at day t − p + l, for the k-th channel. Note

that wlij ̸= 0 only when location j is within the spatial convolution range for location i. For

time-invariant features, we use the common 2-d CNN to measure the general flammability

of cell i,

mi = relu

(
α0 +

K2∑
k=K1+1

βk

N∑
j=1

wk
ijx

k
it

)
.

We use the max pooling structure to obtain annual fire potential measures. The idea of

max pooling is simply taking the maximum value within a given time or spatial window. In

our model, we apply a time window version of max-pooling to each location. As Figure 12

shows, after we perform the 3-d CNN and obtain daily measures of fire potential, we use

the max pooling algorithm to get the maximum value from the previous 365 days, which

we believe should be predictive for the wildfire occurrence of the next 365 days. One major

advantage of this method is that we do not need to compute any statistics to aggregate

those daily meteorological data into annual measures. Specifically, if we were to use a

logistic regression, we would have to first calculate the mean, quantile or extreme values of

the daily temperature, humidity, wind, etc., and then perform the annual forecast. This

might lead to over-estimation because the warmest day may not happen to be the day with

strong wind events. In comparison, with this CNN structure we work directly on the daily

data, compute daily fire potentials and then take the maximum value, which perfectly avoid

the mismatch problem as in the logistic regression.

The max pooling helps to reduce the time dimension of time-varying features from 365

to 1. This means we could now easily concatenate measures of the annual fire potential and

the time-invariant features, as we show in Figure 10. Then we add several fully connected

layers, which are simply linear functions with relu, to allow different features to interact

with each other. We use the sigmoid function in the last layer to produce the annual fire

probability for each location. In sum, we could summarize our model setup as follows: for
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Figure 11: Example of a filter in a 3d convolutional layer with kernel size (3,5): 3
is the temporal convolution size (i.e. the last three 3 days) and 5 is the spatial convolution
size (i.e. the surrounding 5×5 cells). This kernel size is arbitrarily chosen as an example.
Each cube represents a K1 × 1 vector of meteorological data, corresponding to K1 input
channels. Each channel is associated with a particular 3d kernel of dimension (3, 5, 5). The
yellow cube is our target location-time. Its surrounding red cubes plus the yellow one itself
are involved in the 3d convolution, while the blue ones are out of the convolution range and
irrelevant. We only show three days of data because other days are irrelevant. Just like the
lower-dimensional cases, the convolution is performed by taking the inner products between
the original data and the kernel, and the convolutional outputs of all channels are combined
to produce the final output.
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Figure 12: Example of obtaining annual forecast by max-pooling In this graph, we
show how we obtain the annual fire potential for each location i on day t. Each big blue
cube represents a K1-dimensional cross-sectional map on a specific day, while each small
cube stands for a location. At the top layer, we collect the daily meteorological data from
day t−364 to day t, and then apply the 3-d CNN to to obtain daily measures of fire potential.
Then we apply max pooling, which takes the maximum value from the past 365 days for
each location. The 365 maps of fire potential are aggregated into one map after max pooling.

s = t− 365 + L, t− 364 + L, · · · , t+ 1− L,

zis = relu

(
β0 +

K1∑
k=1

βk

p∑
l=1

N∑
j=1

wk
lijx

k
is−p+l

)
,

zait = max (zit−365+L, zit−364+L, · · · , zit+1−L) ,

mi = relu

(
α0 +

K2∑
k=K1+1

βk

N∑
j=1

wk
ijx

k
it

)
,

where L = (p+1)/2 and p is the size of temporal convolution. For simplicity, here we assume

we only use 1 filter in each layer. In practice, we have many filters in each layer, and the

outputs are concatenated to be vectors with different channels. Then,

uit = relu(βu
01+ βu

1z
a
it + βu

2mi),

vit = relu(βv
01+ βvuit),

ŷit = sigmoid(βy
0 + (βy)′vit),

where za
it and mit are concatenated features that reflect annual fire potential and location

flammability, uit and vit are results from the intermediate fully connected layers, and ŷit
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is a scalar that predicts the wildfire probability. Note that βu
1 , β

u
2 and βv are matrix that

collects the coefficients for different channels, while βy in the output layer is a vector.

Another challenge in this forecast problem is the severe data imbalance. Because wildfires

are rare events, the majority of places in California did not burn. This means only a very

tiny proportion of sample are ones, while we have massive number of zeros. To prevent the

CNN from predicting no fire for all locations, we adopt a weighted cross entropy function as

the loss function for training. Concretely,

L = −
1

|I||T |
∑
i∈I

∑
t∈T

γ0(1− yi) log(1− ŷi) + γ1yi log(ŷi),

where

γ0 =
Totaltrain
2 · Negtrain

,

γ1 =
Totaltrain
2 · Postrain

,

and where Totaltrain = |I||Ttrain| is the total number of observations in the training sample,

Negtrain is the number of negative cases (0, no fire), and Postrain is the number of positive

cases (+1, fire). In our case, γ1 will be much larger than γ0, so that the classifier can heavily

weight the few fires in our sample.

4 Data

The three key environmental conditions that determine vegetative wildfire behavior after

ignition events are topography, the nature of fuel availability, and climatic conditions. CAL

FIRE data includes information on the alarm date, the precise location of the wildfire, when

available the ignition cause, and the wildfire perimeter for each incident in California from

2000 through 2022. We follow Abatzoglou (2013) and carry out all of our wildfire prediction

modeling using 2 × 2 kilometer grid-cells projected over the entire state of California. We

pre-process the dataset by correcting several typos in the fire dates and dropping any fire

whose alarm date is missing or after its containment date. We then select all fires whose

alarm dates are between 01/01/2000 and 12/31/2021, and merge them with our geocoded 2

× 2 kilometer cell network. Overall in our data, we have 7,163 wildfires in total and 42,659

fire grid-cells.
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Measures for each grid cell Specific features

1. Topography
http://apps.nationalmap.gov/downloader/

Elevation
Aspect
Slope

2. Large utility districts
https://hub.arcgis.com/datasets/CalEMA::california-electric-utility-service-territory/about

Gas & Electric
Southern California Edison

Pacific Corporation
3. Transmission lines
https://www.arcgis.com/home/item.html?id=d4090758322c4d32a4cd002ffaa0aa12

Count of transmission lines
4. Daily meteorology
https://www.climatologylab.org/gridmet.html.

Maximum air temperature
Specific humidity

5. Hourly meteorology
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=overview

Wind speed
Wind direction

Humidity
6. Dry lightning
www.ncei.noaa.gov/pub/data/swdi/database-csv/v2/

Dry lightning counts
7. Vegetative types
https://gis.data.ca.gov/maps/CALFIRE-Forestry::california-vegetation-whrtype/about

Indicators for thirteen vegetative types

8. Vegetative canopy
https://lpdaac.usgs.gov/products/mod44bv061/

Percent covered by tree canopy
Percent covered by non-tree canopy

Table 1: Table of grid-cell features and their data sources: The table reports the
eight classes of grid-cell measurement for topography, utility district service provider, trans-
mission line counts, hourly meteorologic data, daily meteorologic data, vegetative types and
tree/nontree canopy grid-cell percentage coverage. For each measurement class we also re-
port the download information for the data sources as well as the specific features that we
are using from each source.
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4.1 Topography

Topography is a key factor in vegetative wildfire behavior. It influences the spatial variability

of fuels and the biophysical conditions that determine wildfire ignition, the direction of

spread, the intensity and the duration of wildfire. In California, topography and air pressure

systems play a key role in the direction and speed of the hot dry northwesterly flowing

Diablo winds of Northern California and the Santa Ana winds of Southern California. The

steepness and southwest aspect of the slopes of these ranges and the high elevation of their

ridge tops all induce relatively drier vegetative fuel conditions especially in the high ambient

temperature months of July through October. Topography also has an impact on a variety

of other features of fire behavior such as fire-line width, flame length, and the direction of

spread. Another important aspect of fire behavior that is affected by topography is the rate

of spread since many fires accelerate dramatically uphill, thus placing fire fighters, reservoir

access, and utility infrastructure at risk (McClung and Mass, 2007).

As shown in Table 1, our slope, elevation and aspect measure are computed using topo-

graphical raster data from the U.S. Geological Services and geoprocessing this information

using QGIS software to compute slope and aspect. We conduct the cosine transformation

on the aspect, to measure how close the direction of the is to a southwestern orientation (i.e.

the 225 degrees direction) (Kumar et al., 1997).

4.2 Utility districts and transmission lines

California utilities have struggled with wildfire related liability associated with inadequate

vegetation management around their transmission lines, deferred maintenance of their trans-

mission power pylons, and catastrophic wildfire ignition events associated with damage to

lines and pylons within their service areas. California Assembly Bill 1054, passed in July,

2019, funded a $5 billion fund for utility wildfire safety investments that required utilities to

file Wildfire Mitigation Plans with the California Public Utilities Commission in exchange

for access to the mitigation plan funds for investment reimbursement. There are currently

three utilities that participate in the California Wildfire Fund – San Diego Gas & Electric

Company, Southern California Edison, and Pacific Gas & Electric Company. However, there

remains considerable controversy concerning the most cost effective utility mitigation strate-

gies: undergrounding of lines or covered conductors.17

Again, following Table 1, we focus on the three largest utilities: Pacific Gas & Electric,

Southern California Edison, and Pacific Corporation. Two of these utilities currently par-

17See “This utility’s undergrounding plan is causing sticker shock” by Wes Venteicher and Blanca Begert,
Politico, October 5, 2023. https://www.politico.com/newsletters/california-climate/2023/10/05/

pg-es-undergrounding-plan-is-causing-sticker-shock-00120290.
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ticipate in the California Wildfire Fund under AB1054 and the other, Pacific Corporation,

does not. We download the map of California Electric Utility Service Territory18 and assign

the utility provider to each of our 2km × 2km cells. In addition, we obtain the map of U.S.

Electric Power Transmission Lines.19 For each cell, we use ArcGIS to calculate the distance

from its center to the nearest electrical lines.

• Pacific Gas & Electric (PG&E) is the largest investor-owned California utility and

serves approximately 16 million people throughout a 70,000-square-mile service area

in northern and central California.20 Five of the 10 most destructive fires in California

since 2015 have been linked to PG&E’s electrical network. Regulators have found that

in many fires, PG&E violated state law or could have done more to make its equipment

safer.21

• Southern California Edison (SCE) is one of the nation’s largest electric utilities

and provide electric service to approximately 15 million people through 5 million cus-

tomer accounts. SCE’s service area includes portions of 15 counties and hundreds of

cities and communities in a 50,000-square-mile service area within Central, Coastal

and Southern California.22 Public Utilities Commission investigators found SCE liable

for damages from SCE power lines associated that ignited the 2017 Thomas fire burn-

ing more than 280,000 acres, damaging more than 1,300 structures and causing two

deaths in Santa Barbara and Ventura counties. Another Public Utilities Commission

again found liability related to Southern California Edison equipment that was likely

“associated” with 2018’s deadly Woolsey fire, which burned more than 1,600 structures

in Los Angeles and Ventura counties and killed three people.23

• Pacific Corporation is the largest transmission-line grid operator in the West, with a

service area of 141,500 square miles including parts of Oregon, Washington, California,

Utah, Idaho and Wyoming, and has 2.1 million customers.24 S&P Global reported

in August 2024 that Pacific Corporation faces at least $46 billion in claims related

to Western US wildfires following recent lawsuits in Oregon for fires in Oregon and

California.25

18https://hub.arcgis.com/datasets/CalEMA::california-electric-utility-service-

territory/explore
19https://www.arcgis.com/home/item.html?id=d4090758322c4d32a4cd002ffaa0aa12
20https://www.pge.com/en/about/company-information/company-profile.html.
21https://www.nytimes.com/interactive/2019/03/18/business/pge-california-wildfires.html.
22https://download.newsroom.edison.com/create_memory_file/?f_id=

5cc32d492cfac24d21aecf4c&content_verified=True.
23https://www.latimes.com/california/story/2021-12-17/southern-california-edison-faces-

550m-penalty-for-wildfires.
24https://www.pacificorp.com/about.html.
25https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/electric-

28

https://hub.arcgis.com/datasets/CalEMA::california-electric-utility-service-territory/explore
https://hub.arcgis.com/datasets/CalEMA::california-electric-utility-service-territory/explore
https://www.arcgis.com/home/item.html?id=d4090758322c4d32a4cd002ffaa0aa12
https://www.pge.com/en/about/company-information/company-profile.html
https://www.nytimes.com/interactive/2019/03/18/business/pge-california-wildfires.html
https://download.newsroom.edison.com/create_memory_file/?f_id=5cc32d492cfac24d21aecf4c&content_verified=True
https://download.newsroom.edison.com/create_memory_file/?f_id=5cc32d492cfac24d21aecf4c&content_verified=True
https://www.latimes.com/california/story/2021-12-17/southern-california-edison-faces-550m-penalty-for-wildfires
https://www.latimes.com/california/story/2021-12-17/southern-california-edison-faces-550m-penalty-for-wildfires
https://www.pacificorp.com/about.html
https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/electric-power/080524-wildfire-claims-against-pacificorp-surge-to-46b-on-oregon-mass-complaints
https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/electric-power/080524-wildfire-claims-against-pacificorp-surge-to-46b-on-oregon-mass-complaints


Given the risks associated with density of California transmission lines and transmission

power pylons, we also measure the underlying vegetative ground cover due to their differing

susceptibility to combustion events when temperatures, wind, and relative humidity suffi-

ciently lower moisture levels. To measure these risks, as shown in Table 1, we count the

number of transmission lines that cross each grid-cell and then take the log of that count as

a measure to risks of failures of the lines and pylons themselves.

4.3 Meteorology

4.3.1 Daily measures

Following Table 1, our daily measure of climate data are obtained from gridMET, which

is a publicly available dataset of high-spatial resolution (4km×4km) surface meteorological

data covering the contiguous US from 1979 till yesterday (see Chegini et al., 2021). We

then use interpolation to map from the (4km×4km) grid cells to a denser 2km×2km spatial

coverage of the state. gridMET data includes 15 meteorological variables in total, and is

updated daily. As shown in the Appendix, Figure 8, given the high correlations between

maximum air temperature (tmmx) and the gridMET measures for fuel moisture over 100

hours (fm100), fuel moisture over 1000 hours (fm100), reference evapotranspiration (etr),

minimum air temperature (tmmn), vapor pressure deficit (vpd), and surface radiation (srad),

we focus on two key climate measures found in gridMET: maximum air temperature and

specific humidity.

4.3.2 Hourly measures

In California, there are two types of fire-associated wind: the Diablo Winds of northern

California and the Santa Ana winds of southern California. Santa Ana winds have been

the driving force behind many of southern California’s most devastating fires (see Billmire

et al., 2014; Jin et al., 2013; Kochanski et al., 2013), more recently the Diablo winds of

northern California have become more dangerously associate with wildfire occurrence with

their similarly low relative humidity, high temperatures, and very high wind speeds (see

Bowers, 2018; Diaz, 2022; Keeley and Syphard, 2018; Linn et al., 2020; Liu, 2022; Liu et al.,

2021). Although both of these winds are shaped by atmospheric conditions and are driven

by the topography of region, they also have important differences.

The Diablo Winds (see Abatzoglou et al., 2018, 2021; Diaz, 2022; MacDonald et al.,

2023) are strong northeasterly winds that flow over the western slopes of the Sierra Nevada

power/080524-wildfire-claims-against-pacificorp-surge-to-46b-on-oregon-mass-complaints.
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range in eastern California where they heat up and lose humidity before passing through the

California central valley. High pressure systems in the central valley then drive the Diablo

winds over the California coastal range where the compression and the loss of moisture

produces intense, dry, downslope winds. In contrast, the Santa Ana winds of southern

California are gravity driven winds that occur when high pressure builds over the Great

Basin to the West of the Sierra Nevada mountains — the Great Basin includes most of

Nevada, half of Utah, and sections of Idaho, Wyoming, Oregon, and California — and low

pressure systems develop over the California coast (see Cardil et al., 2021; Gershunov et al.,

2021; Guzman-Morales, 2018; Keeley et al., 2021). The cold air from the Great Basin then

sinks and the dry air from the desert is pushed toward the low lying coastal areas through

the Sierra and coastal mountain canyons and where compression causes the winds to warm

by tens of degrees Fahrenheit per mile as it travels.

Hourly climate measurement is required to measure the occurance of Diablo and Santa

Ana winds. Diablo winds are characterized by their intensity, long duration, low moisture

content, and northeasterly direction. Following Bowers (2018) and Diaz (2022), we iden-

tify the occurance of Diablo winds if the winds are northeasterly in direction, have speeds

exceeding eight meters per second, have relative humidity that is below 25%, and have a

duration of at least six hours. Following Guzman-Morales (2018), the Santa Ana winds are

defined as northeasterly winds, with wind speeds of over 30 miles per hour (mph), relative

humidity of below 10% (or dropping to single digits), and average durations of at least 12

hours of continuous wind speed. Following Table 1, our hourly climate measurement data

are obtained from ERA5-Land, published by ECMWF (The European Centre for Medium-

Range Weather Forecasts).26 We identify wind events using hourly two meter dewpoint

temperature, two meter temperature, ten meter directional components (u-component and

v-components).

4.4 Dry lightning

Dry lightning, occurring when there has been less than 2.5 mm of rainfall, is a major source

of wildfire ignition in central and northern California (see Kalashnikov et al., 2022). While

human-caused wildfire ignitions predominate in southern California, lightning-caused fires

are more common in the northern half of the state, particularly over mountainous terrain

(see Balch et al., 2017; Brey et al., 2018; Chen and Jin, 2022; Keeley and Syphard, 2018).

Summertime lightning outbreaks in northern California from July through August, unlike

the predominantly human-caused fires that originate in a single location, can strike multiple

26See https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=overview.
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locations and start numerous simultaneous wildfires (Miller et al., 2012). Widespread thun-

derstorms with dry lightning have produced some of the largest and longest-lasting wildfires

in recent decades including the 1987 wildfire season (see Duclos et al., 1990), the 2008 wild-

fire season (Wallmann et al., 2010), and the disasterous 2020 wildfire season (Keeley and

Syphard, 2021). Based on our CAL FIRE ignition-cause data we find that 20% of wildfires

in northern California between 2003 and 2022 were caused by dry lightning.

4.5 Vegetative types

Vegetation has significant effects on wildfire behavior and is thus an important focus of wild-

fire prediction modeling (see Kearns et al., 2022; Price and Bradstock, 2014). Topographic

features such as elevation, aspect, latitude, and slope also influence microclimatic condi-

tions, such as temperature, precipitation, direct solar radiation, wind exposure, among oth-

ers, which together influence the moisture content of fuel (Flannigan et al., 2016, 2009;

Westerling, 2014). As noted above, topography can also affect ignition probabilities be-

cause steep slopes, ridge tops, and southwest facing slopes are all characterized by drier

fuel conditions. Other important vegetative features that effect wildfire ignition probabili-

ties and behavior include the spread of invasive non-native or non-conifer species (Brooks

and Matchett, 2006; Calhoun et al., 2022; Holmes et al., 2008) and the degree of nearby

urbanization (see Alexandre et al., 2016; Kestelman, 2024; Price and Bradstock, 2014).

As shown in Table 1 we focus on thirteen types of vegetative exposure for each grid cell:

Agriculture, barren/other, conifer forest, conifer woodland, desert, desert shrub, hardwood

forest, hardwood woodland, herbaceous, shrub, urban, water, and wetland following the

California Department of Agriculture vegetative indexes discussed in Table 1. Sub Figure 13a

presents the geographic locations of the vegetative ground coverage types. As shown, conifer

woodlands/forests dominate the Sierra Nevada mountain range and the northern section of

the coastal range. The hardwood forest and hardwood woodlands are found in the foothills

of the Sierra Nevada and along the coastal range north of San Francisco. Herbaceous,

shrub, and woodlands are the dominant vegetative ground covers in the coastal range areas

around San Francisco and extend south to Santa Barbara County. The Los Angeles Basin

including San Diego is dominated by herbaceous, desert shrub, and desert woodland with

small areas of conifer forest at higher elevations. The central valley of California is dominated

by irrigated agricultural vegetation. As shown in Subfigure 13c of Figure 13, the historical

locations of wildfires in California are found in the western facing slopes of the Sierra Nevada

and along coastal range in both northern and southern California. The northern California

wildfires are dominated by hardwood/conifer woodland and forest vegetation. The southern
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California wildfires have primarily occurred in areas dominated by herbaceous, desert/conifer

woodland, and shrub vegetation. The irrigated areas of the central valley have the lowest

historical wildfire incidence.

4.6 Vegetative canopy density

Finally, as shown in Table 1, in addition to our measures for the vegetative types found

within grid cells, we also account for the canopy coverage of the vegetation within the cells.

Dense canopy coverage is importantly associated with the effects of incoming solar energy

and the live fuel content of the vegetation. The live fuel moisture content is a measure of

the water content of live fresh foliage relative to its dry mass (Yebra et al., 2018) and it

is an important determinant of the potential for fire ignitions to propagation. California

has significant heterogeneity in its canopy coverage and the types of vegetation associated

with the coverage. Northern California has dense canopies of conifer and hardwood in the

foothills of the Sierra Nevada and the northern coastal range that are significantly prone to

wildfire (see Chen et al., 2021). The shrubland canopies of the southern California chaparral

areas from Monterey County south to the Los Angeles Basin and San Diego pose equally

severe threat of wildfire occurrence and rapid propagation (see Dennison and Moritz, 2009;

Dennison et al., 2008).

We obtain two measures of canopy from the Moderate Resolution Imaging Spectroradiometer’s

(MODIS) Vegetation Continuous Fields database from the Geological Survey Land Process

Distributed Active Archive Center. The first measure is the “Percent covered by tree

canopy,” defined as the canopy coverage by woody plants that are greater than or equal

to five meters tall (see Chen et al., 2021; DiMiceli et al., 2021). The second measure is the

”Percent covered by non-tree canopy,” defined as the canopy coverage associated with small

trees (less than 2.5 meters), grass, or shrubs (see Lai et al., 2022; Mallinis et al., 2019).

5 Wildfire forecasting: logistic regression vs. CNN

As discussed in Section 3, logistic generalized additive models been a common approach to

the modeling of wildfire occurrence in the climate literature (Xi et al., 2019) and logistic

regression is currently the common methodology that is applied in recent analyses of wildfire

incidence in the economics literature (see Biswas et al., 2023; Kahn et al., 2024).
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(a) Geographic location of vegetative types
in California, 2021 (b) Vegetative types 2021

(c) Historical location of wildfire incidents in
California (2000–2021)

Figure 13: Relationship between vegetative distributions and wildfire incidents
The vegetative coverage data are sourced from CAL FIRE Forestry (https://gis.data.
ca.gov/maps/CALFIRE-Forestry::california-vegetation-whrtype/about). The wild-
fire incidence and burn area data are sourced from California Department of Forestry and
Fire Protection (CAL FIRE) (https://www.fire.ca.gov/what-we-do/fire-resource-
assessment-program/fire-perimeters).
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coef std err z P> |z|

Constant -5.7238 0.011 -533.151 0.000
Specific humidity (q5: May–Oct) -0.0423 0.002 -18.298 0.000
Maximum air temperature (q95: May–Oct) 0.2281 0.003 78.685 0.000
Indicator: Diablo or Santa Ana wind events 0.1527 0.010 15.682 0.000
Indicator: dry lightning 0.0667 0.006 11.578 0.000
Transmision line count 0.0592 0.006 10.332 0.000
Transmision line count × PG & E Indicator 0.0444 0.006 7.108 0.000
Transmision line count × Southern California Edison Indicator 0.1602 0.007 23.675 0.000
Transmision line count × Pacific Corporation Indicator -0.3480 0.012 -28.193 0.000
Grid-cell percentage tree canopy 0.1782 0.004 50.321 0.000
Grid-cell percentage non-tree canopy 0.3837 0.004 97.561 0.000
Slope 0.4568 0.004 113.477 0.000
Aspect 0.0047 0.002 2.496 0.013
Barren/other 0.8927 0.021 41.851 0.000
Conifer forest 1.6291 0.013 125.272 0.000
Conifer woodland 1.1832 0.016 72.456 0.000
Desert shrub 0.0236 0.017 1.395 0.163
Desert woodland 0.6652 0.034 19.407 0.000
Hardwood forest 1.7103 0.013 129.134 0.000
Harwood woodland 1.3460 0.012 107.779 0.000
Herbaceous 1.5020 0.011 131.827 0.000
Shrub 2.0482 0.011 181.352 0.000
Urban 1.2230 0.014 87.214 0.000
Water 1.5557 0.021 74.361 0.000
Wetland 0.8069 0.028 28.361 0.000

No. Observations: 20,483,064
Pseudo R-squ.: 0.07144
Log-Likelihood: -1.5974e+06
LL-Null: -1.7203e+06
LLR p-value: 0.000

Table 2: Logistic regression results. The table reports a logit regression of annual grid-
cell incidence of wildfire using data from 2000 to 2021. incidence at a grid-cell at month t

5.1 Logistic regression

Because our goal is the annual prediction of wildfire occurrence and given the heavy tailed

data distributions discussed in Section 1, we use annual aggregates measured at the 5th

quantile for specific humidity and at the 5th quantile for maximum air temperature over the

fire season months of May through October. For each grid cell, we construct a daily indicator

variable for Diablo or Santa Ana wind exposure using grid-cell hourly measurements of the

maximum annual wind speed, wind direction, and humidity that define these winds.

As shown in Table 2, all of the coefficient estimates are of the expected sign and nearly

all are statistically significant at better than the .0001 level. The key meteorological features

measured at the 5th quantile for specific humidity and at the 5th quantile for maximum air
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temperature over the wildfire season of May through October are shown to have a statistically

significant statistically negative coefficient for specific humidity and a statistically significant

positive coefficient for maximum air temperature. Annual grid-cell wildfire occurrence is also

shown to be statistically significantly positively associated with the indicator features for dry

lightening and Diablo/Santa Ana winds. Additionally, consistent with recent wildfire events,

higher counts of transmission lines within grid-cells and the interaction of higher counts with

indicator variables for the location of those lines in either the PG&E and Southern California

Edison service provision districts are also positively associated with higher levels of wildfire

occurrence, whereas higher transmission line counts in the Pacific Corporation service area

is negatively associated with wildfire incidence.

Consistent with the climate literature, the logistic regression results also show that the

grid-cell percentage of both tree and small-tree/shrubland canopy coverage is positively as-

sociated with the occurrence of wildfire. Similarly the fixed-effects controls for other twelve

vegetative types, other than desert shrub, are shown to be statistically significantly and pos-

itively associated with wildfire occurrence where the hold-out vegetative type is the irrigated

agriculture. The two topographical measures for aspect and slope are also shown to be sta-

tistically significant and positively associated with the occurrence of wildfire consistent with

the discussion found in Section 4.1.

Overall, the logistic regression results provide feature associations with the occurrence of

wildfire that comport well with the climate, topographical, and vegetative coverage literature

surveyed in Section 4 and are consistent with the cross-sectional econometric techniques

that mostly characterize this literature as discussed in Section 3. Of course, these results

also reflect the potential shortcomings of logistic regression methodologies including lack of

controls for spatial and temporal correlations among the cell features, lack of controls for

non-linearities in the association between features and the occurrence of wildfire, the likely

need for a more saturated specification that accounts for all possible interactions between

indicator variables and other continuous measured features, and, finally, the fact that logistic

regressions are cross-sectional models.

5.2 Spatiotemporal CNN

Following the presentation of our spatiotemporal CNN for out-of-sample annual wildfire

forecasts in Section 3, we re-analyze wildfire occurrence in California using spatiotemporal

CNNs again using the meteorological, topographical, utility exposure, and vegetative features

used in the logit regression reported in Table 2.

Since the California wildfire data is significantly imbalanced, where the unconditional
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probability of wildfire at a given grid-cell is essentially zero and the number of grid-cell with

wildfire occurrence is far outweighed by the number of grid-cells without an occurrence of

wildfire, we first focus on the F1 scores, the harmonic mean of precision and recall. We

divide the entire spatiotemporal dataset into the training, validation and the test sets, in the

order of time. The training set covers the period between Dec 31, 2000 and Dec 31, 2018.

For computational simplicity, we sample the last day of every month in the training set to

train the 3-d CNN model, which includes altogether 217 days with 94,829 cells on each day.

We use the day Dec 31, 2019 as the validation, and Dec 31, 2020 as the test. Note that for

each day we are predicting one-year ahead, so the validation set corresponds to the wildfires

in 2020, while the test set corresponds to 2021. In addition, we carefully divide the dataset

to avoid any looking-ahead problem. The last day in the training set is Dec 31, 2018, which

is one year before the validation day. We also leave an one year gap between validation and

test days.

Table 3 reports the F1s for the training, validation, and out-of-sample test data for our

annual spatiotemporal CNNs estimates of annual wildfire occurrence with differing hyperpa-

rameter structures. The rows and columns of Table 3 represent differing kernel sizes for the

3d convolutional layer, where, for example, row p=3 corresponds to the temporal convolution

size of the last 3 days and the column k=5 corresponds to the spatial convolution size of

the surrounding 5×5 cells. Thus, for the p=3 row and the k=5 column in Table 3, each of

the F1s reported for the training, validation, and out-of-sample CNN are associated with a

channel structure comprised of 3d kernels of dimension (3, 5). Table 3 presents the F1 results

for a range of hyperparameter structures from p=0 to p=30 for the temporal convolution

sizes and k=1 to k=9 for the spatial convolution sizes.

As expected, given the challenges of imbalanced classification and the underrepresentation

of the wildfire occurrence in the training data, the F1s for the training estimates are uniformly

low, ranging from 0.0523 for the 3d kernels of dimension (30, 7) to a high of 0.0622 for the 3d

kernels of dimension (3, 7). The highest F1 scores reported in Table 3 are obtained for both

the validation data and the out-of-sample test data for the 3d kernels of dimension (3, 5). As

shown, the F1 is 0.2084 for the validation data and the F1 is 0.1485 test data, indicating that

the spatiotemporal CNN performs only modestly well in forecasting the annual occurrence

of wildfire while minimizing false positive forecasts.

Table 4 allows for a more nuanced interpretation of the differing hyperparameter struc-

tures and the F1 statistics by comparing a range of performance statistics for both the

validation and out-of-sample test data and comparing the added nonlinearity of the spa-

tiotemporal CNNS to the benchmark logistic regression forecasting model. As shown in

Table 4, the CNNs uniformly outperform the logistic regression in terms of F1, Brier scores,
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Training k=1 k=3 k=5 k=7 k=9

p=1 0.0556 0.056 0.0581 0.0594 0.0549
p=3 0.0568 0.0609 0.0573 0.0622 0.0618
p=7 0.0560 0.0628 0.0620 0.0719 0.0643
p=30 0.0556 0.0687 0.0690 0.0523 0.0605

Validation k=1 k=3 k=5 k=7 k=9

p=1 0.1962 0.1994 0.2002 0.2061 0.1934
p=3 0.2021 0.2170 0.2084 0.2084 0.2008
p=7 0.1968 0.1917 0.1999 0.2269 0.2017
p=30 0.1996 0.2002 0.2163 0.1814 0.1997

Test k=1 k=3 k=5 k=7 k=9

p=1 0.1262 0.1243 0.1283 0.1279 0.1326
p=3 0.126 0.1354 0.1485 0.1322 0.1501
p=7 0.1301 0.1289 0.1383 0.1455 0.1265
p=30 0.1195 0.1295 0.1456 0.1322 0.1355

Table 3: F1 performance The F1 scores on training, validation and test samples with
different CNN hyper-parameters

true positives, precision, recall, and the 0.5 auc value shows the logistic regression to be no

better than randomly classifying annual wildfire occurrence for prediction purposes. Given

the inherent randomness of wildfire occurrence, the relative performance of the preferred

3d kernels of dimension (3, 5) for the spatiotemporal CNN can be interpreted as providing

a moderately successful positive classification of annual wildfire with an auc of 0.7499, a

precision of .0821 due to the preponderance of false positive predictions on the part of the

CNN, and a relatively high recall of 0.7752. Of course, from the vantage point of insur-

ance companies the worst case classification is false negatives, when wildfire and presumably

losses occur, suggesting that the high recall statistic would be informative. Whereas for

homeowners, the worst case scenarios is false positives, when the model predicts wildfire

occurrence thus falsely increasing the rate of incorrect non-renewals of wildfire insurance

policies, suggesting that precision may be the more informative statistic for homeowners.

Table 5 presents an analysis of the relative effects of shuffling model features on the

performance metrics of the preferred spatiotemporal CNN with 3d kernels of dimension

(7, 7). For each metric, we show its percentage change when a feature is shuffled, relative to

its original value. We recognize that the shuffling-based importance measures is somewhat

limited in that it is comparable only for features with similar distribution, such as normally-

distributed features. However, in our study and other climate studies, many features would
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hyperparameters (p,k) validation test

metric logistic (1,1) (3,5) (7,7) logistic (1,1) (3,5) (7,7)

cross entropy 0.9968 0.6874 0.6719 0.5742 0.6505 0.6907 0.5922 0.6404
Brier score 0.0646 0.2525 0.2461 0.2088 0.0422 0.2548 0.2112 0.2359
true positive 0 5524 5613 5165 0 3363 3100 3344
false positive 0 44658 42127 34233 0 45922 34651 38638
true negative 88701 44043 46574 54468 90830 44908 56179 52192
false negative 6128 604 515 963 3999 636 899 655

accuracy 0.9354 0.5227 0.5503 0.6288 0.9578 0.5090 0.6251 0.5856
precision 0 0.1101 0.1176 0.1311 0 0.0682 0.0821 0.0797
recall 0 0.9014 0.916 0.8429 0 0.8410 0.7752 0.8362
auc 0.5 0.7473 0.7858 0.7861 0.5 0.6944 0.7499 0.7638
prc 0.0646 0.1261 0.1452 0.1540 0.0422 0.0660 0.0816 0.0991

f1 score 0 0.1962 0.2084 0.2269 0 0.1262 0.1485 0.1455

Table 4: Comparing the logistic regression with CNN Note that when (p,k) = (1,1),
the model will be equivalent to a logistic regression that has additional nonlinearity and is
trained with weighted loss function.

have highly skewed or imbalanced distributions. For example, the majority of the locations

in California won’t suffer from Diablo or Santa Ana events, implying the wind event indicator

will mostly be zeros. Similarly, the dry lightening flashes will be zero for the majority of areas

too. It is concerning to us that the classical random shuffling method will under-estimate

the importance of these features with skewed distribution, because the shuffled values will

remain the same for the majority area. To take this into account, we customize the shuffling

a bit for those variables. Specifically, we flipped the values for dummies with imbalanced

distribution. For skewed distribution with massive zeros, we assign zero to original non-

zero values, and randomly assign non-zero values to original zeros. We understand that the

feature importance may still not be comparable across all features, so we suggest compare

the importance measures only within features with similar original distributions. In Table

5, we report the feature importance separately for the two different groups of features.

Similar to the logistic regression results, the slope and the indicators for dry lighten-

ing, and Diablo or Santa Ana winds, and as well as the vegetative type, all have large

impacts on the CNN model performance metrics both in the validation and the test sample.

Interestingly, maximum temperature has a greater effect on the CNN metrics for the test

data than for the validation data. The features with lower overall impact on the spatiotem-

poral CNN include the utility provider, the number of transmission lines, aspect and the

percentage of tree and non-tree canopy.
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Validation

feature f1 score precision recall loss

features with normal distribution

Vegetative type indicators -19.56 -22.35 4.59 -4.03
Daily specific humidity -11.29 -6.29 -33.96 44.01
Slope -11.02 -8.36 -25.01 29.29
Utility provider -5.45 -6.77 4.05 -3.17
Grid-cell percentage tree canopy -2.21 -2.47 -0.56 2.85
Daily maximum air temperature -2.03 -0.3 -11.89 17.55
Aspect 0.02 -0.04 0.39 0.29
Grid-cell percentage non-tree canopy 0.58 1.17 -3.06 2.63

features with skewed/imbalanced distribution

Daily dry lightening flashes -48.64 -29.19 -81.43 79.06
Daily indicator: Diablo or Santa Ana wind -44.34 -48.49 15.66 38.51
Number of transmission lines -3.02 -4.04 4.1 -13.14

Test

feature f1 score precision recall loss

features with normal distribution

Vegetative type indicators -14.94 -16.52 6.19 -0.14
slope -12.42 -11.07 -24.46 22.65
Daily maximum air temperature -9.75 -8.49 -21.11 26.85
Number of transmission lines -7.41 -7.84 -2.72 2.29
Daily specific humidity -7.26 -5.03 -25.63 31.13
Grid-cell percentage tree canopy -4.17 -4.3 -2.78 6.13
Utility provider -2.65 -3.41 6.13 -3.73
Aspect 0.06 0.04 0.3 -0.51
Grid-cell percentage non-tree canopy 4.34 4.78 -0.03 -1.16

features with skewed/imbalanced distribution

Daily indicator: Diablo or Santa Ana wind -42.95 -45.65 19.08 132.15
Daily dry lightening flashes -26.22 -20.1 -59.09 50.57
Number of transmission lines -3.02 -4.04 4.1 -13.14

Table 5: Feature importance analysis CNN feature importance: Percentage change in
metrics with shuffled features. Note that the feature importance are calculated based on
random shuffling, so it will be affected by the data characteristics and distribution of each
feature. This means we should compare the importance separately for dummies and non-
dummies. For dummy variables, we flipped its value to compute the importance, while for
variables with continuous values, we shuffled the data across time and space.
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5.3 Out-of-sample wildfire predictions

Figure 14, presents the results of an out-of-sample forecasting exercise for annual wildfire

occurrence in 2021, a very high actual wildfire incidence year. For comparison, we extends

our prediction to 2022, a very low actual wildfire incidence year, by simply applying the

trained model to the day Dec 31, 2021. Based upon our max-pooling strategy to achieve an-

nual out-of-sample forecasts, we present our estimates for the annual wildfire occurrence for

the 2021 fire season in the left-hand side of Figure 14. As shown, we accurately forecast the

grid-cell pre-conditions for the location and occurrence of the Mcfarland Fire, the McCash-

River Complex-Monument Fires, the Antelope Fire, the Windy-KNP Complex Fires, and the

devastating Dixie and Caldor wildfires. As examples of the randomness of wildfire ignition

events, the Dixie Wildfire ignition was caused by 65-foot Douglas fir tree that fell on a Pacific

Gas and Electric (PG&E) transmission line and the Caldor Fire ignition event was arson.

The accuracy of the spatiotemporal CNN forecasts of the locational preconditions of these

fires is, however, an important justification for its use in annual wildfire prediction. Notably,

the CNN accurately accounted for the cumulative effects of the late August heat, and low

humidity as well as the effect of these conditions on the differing vegetative types and canopy

coverage of grid-cells. The severity of these conditions then escalated in September due to

seasonal offshore winds over challenging topography and wide-spread dry lightening strikes

that occur with dry thunderstorms when the air so dry that rain evaporates before it hits

the ground. According to the National Weather Service in San Francisco there were approx-

imately 1,100 cloud to ground lightening strikes, many of them dry lightening, recorded in

the state on the evening of September 9, 2021 and too many lightning strikes to count that

were captured by NOAA Satellite sensors.27

The right-hand side of Figure 14, present our annual out-of-sample wildfire occurrence

forecasts for the 2022 wildfire season. Compared with 2021, the fire probability is on average

much lower in 2022, especially for Northern California. This is mainly due to the trend of the

Diablo events being weaker compared with the previous years. Note that the wind events

stand out in our feature importance table, which means it’s one of the most informative

predictors that could affect the prediction significantly.

5.4 Expected residential losses from wildfire

To obtain, the percentage of value loss for residential structures post wildfires, we construct

a one year pre-wildfire and one-year post-wildfire panel data set of the assessed value of the

improvement, using ATTOM Assessor files, for all residential single family properties found

27See https://x.com/NWSBayArea/status/1436327235661668357, September 10, 2021, 6:54am.
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Figure 14: CNN one year ahead out-of-sample wildfire prediction

within the CAL FIRE wildfire burn perimeters. The residential single family house data

are obtained from the ATTOM Assessor Files that have been merged to the CAL FIRE

burn area shape files. The WUI intermix and interface data are obtained from the CAL

FIRE Damage Inspection (DINS) data (see https://gis.data.cnra.ca.gov/datasets/

CALFIRE-Forestry::cal-fire-damage-inspection-dins-data/explore). The housing

density is computed by the authors. The elevation of the house and its aspect are ob-

tained are obtained from the U.S. Geological Survey (see http://apps.nationalmap.gov/

downloader/) given on the latitude and longitude of the property.

We report the results of the regression of percentage loss in pre-wildfire assessed value of

the improvement on standard normal transformations for all of the features. As shown in

Table 6, we find that the average loss is 28.3% of the assessed value of the improvement for

wildfire exposed residential single family properties. The loss percentage increases to 32.5%

for properties built before California strengthened its wildfire related building codes in 2008.

Percentage losses also increase with the standardized year of the building’s age. Single family

residential properties at higher elevations and southwesterly aspects also experience higher

losses. Standardized housing density is also associated with higher losses as are locations in

either the WUI interface or intermix. Overall, these results confirm the merits of mandate

building codes in reducing residential single family property losses from wildfire (see Baylis

and Boomhower, 2021).

Figure 15 presents the 2021 spatiotemporal CNN out-of-sample predictions for annual

wildfire occurrence by zip code aggregates of the grid-cell estimates. As shown, the highest

annual wildfire prediction for zip aggregates is 1 for the zip codes just north of San Franciso

in Marin County, zip code in the suburban area of Contra Costa County, a zip code in the

foothills of the Sierra Nevada, and a zip code aggregate in suburban Los Angeles County.
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coef std err z P> |z|

constant 0.2831 0.020 14.472 0.000
Indicator: Built before 2008 codes 0.0422 0.018 2.386 0.017
Building Age 0.0808 0.003 28.266 0.000
Elevation 0.1448 0.003 46.784 0.000
Aspect 0.0699 0.003 24.624 0.000
Housing density 0.1571 0.004 44.652 0.000
Indicator: WUI Intermix 0.2009 0.010 19.859 0.000
Indicator: WUI Interface 0.0732 0.011 6.950 0.000

No. Observations: 23,629
Adjusted R-squared 0.275
F-Statistic 1283.
Prob (F-statistic): 0.00
Log-Likelihood: -12814

Table 6: Regression of the percentage of the pre-wildfire residential single fam-
ily value (the assessed value of the improvement) that is lost due to wildfire
exposure We estimate the percentage loss of the pre-wildfire assessed value of the improve-
ment one year after a wildfire for all residential single family structures located within CAL
FIRE defined burn area perimeters from 2014 through 2020. The residential single family
house data are obtained from the ATTOM Assessor Files that have been merged to the
CAL FIRE burn area shape files. The WUI intermix and interface data are obtained from
the CAL FIRE Damage Inspection (DINS) data (see https://gis.data.cnra.ca.gov/

datasets/CALFIRE-Forestry::cal-fire-damage-inspection-dins-data/explore. The
housing density is computed by the authors. The elevation of the house and its aspect are
obtained are obtained from the U.S. Geological Survey (see http://apps.nationalmap.

gov/downloader/) given on the latitude and longitude of the property.

42

https://gis.data.cnra.ca.gov/datasets/CALFIRE-Forestry::cal-fire-damage-inspection-dins-data/explore
https://gis.data.cnra.ca.gov/datasets/CALFIRE-Forestry::cal-fire-damage-inspection-dins-data/explore
http://apps.nationalmap.gov/downloader/
http://apps.nationalmap.gov/downloader/


Annual zip code aggregate grid-cell predictions of point 0.9 to 0.7 are found in the Coastal

range north of San Francisco and in the foothill ares of the northern Sierra Nevada mountains,

where as seen in Figure 14, very severe wild fires actually occurred in 2021. Other areas

of annual wildfire occurrence predictions include the eastern suburbs of the Bay Area and

southern California that are also coastal range shrubland and woodland forest vegetative

areas. The primary difference between the severity of the prediction in the eastern Bay

Area and that of southern California is the nature of the winds. The Bay Area is primarily

exposed to Diablo Winds that were most severe in the north, whereas southern California

is continually exposed to the hazards of the Santa Ana winds and its drying effects on

the shrubland and chapparal vegetation and on dense non-tree canopy. The very severe

wildfire conditions did lead to one devastating wildfire complex, called the Windy Fire KNP

Complex Fire, and other smaller fires in the southern Sierra and again in the coastal range

around Los Angeles and San Diego as shown again in Figure 14. In 2021 overall, there

was a 167 per cent increase in wildfire acres burned in northern California compared to

the ten-year average while a 40 per cent increase was observed in the Northern Rockies.

California observed 200,000 fires through the course of the year with an estimated cost of

$11.4 Billion.28

Figure 15: CNN one year ahead (2021) out-of-sample wildfire prediction at the zip code level

Figure 16 reports the grid-cell expected out-of-sample forecast for the per house structural

losses from wildfire for 2021. The key to the figure report the dollar amount of loss per house

using quintile cutoffs for visualization. The losses were calculated as the grid-cell expected

28see https://blueskyhq.io/blog/the-true-cost-of-2022-californian-wildfires
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Figure 16: CNN one year ahead (2021) out-of-sample expected loss for all single family
houses in California

probability times the percentage of structural loss given by the house by house characteristics

of the grid-cell times the 2020 assessed value of the improvement house by house given

training precision and recall.29 As shown, the areas with the highest expected structural

wildfire losses are found in the densely populated Bay Area and the Los Angeles Basin from

Santa Barbara south to San Diego as well as the grid-cells found in the increasingly populated

areas of Sacramento, Placer and El Dorado counties in the foothills of the Sierra Nevada.

Overall, the expected residential single family structural losses from our spatiotemporal

CNN wildfire predictions and our empirical estimates of the expected losses to structures

from these fire is $10.8 billion for 2021. This out-of-sample forecast is remarkably close to

the most recent tallies of the structural costs of the 2021 wildfires.

6 Spatiotemporal CNN and insurance risk

Given the Section 2 discussion concerning the recent intertemporal loss-smoothing problems

of the U.S. fire peril insurance industry, the 2021 California wildfire season was especially

damaging to the State Farm Group, the largest P&C insurance carrier in the state. As

reported by the National Association of Insurance Commissioners (NAIC), State Farm ex-

29Since precision adjusts for the over-estimation, while recall adjusts for the under-estimation we adjust
our classifications accordingly. Thus for example, if precision = 10%, then only one out of ten predicted fires
will actually happen. So we multiply by 10% to adjust. If recall = 80%, then we only predicted four out of
five fires, i.e. we missed one fire. So we divide by 80% to adjust.
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perienced a 144.8% fire-peril loss ratio in 202130 and AM Best downgraded it’s Financial

Strength Rating (FSR) to B (Fair) from A (Excellent) and the Long-Term Issuer Credit

Rating (Long-Term ICR) to “bb+” (Fair) from “a” (Excellent).31 In September of 2024, the

California Subsidiary of the State Farm group requested a 30% rate increase for homeowners

insurance in California, citing concerns about financial solvency and the need to protect itself

from potential insolvency due to rising costs and risks in the state. As part of State Farm’s

30% rate hike request to the California Department of Insurance, State Farm’s Exhibit 1

documented its prior insurance rate increases and its use of vendor wildfire risk models.32

The models that State Farm identified for its 2021 eligibility filings included CoreLogic

Brushfire; the CoreLogic RQE; AIR Touchstone; and the GRID Fire Model. Of course, all

of these models are proprietary and State Farm argued “...Public disclosure to competitors

of eligibility criteria that constitute confidential trade secret information is bad public policy

and impairs competition.”33 State Farm also provided a table of the impacted zip codes for

the 23,480 P&C policy non-renewals the firm had scheduled for 282 zip codes in California.

Table 7 provides summary statistics of our CNN expected 2021 out-of-sample wildfire

probabilities for the 272 zip codes where State Farm did not renew at least one P&C policy

and for the zip codes where State Farm renewed all of its policies. At least at the empirical

mean, our CNN expected wildfire probabilities support the State Farm zip code classifica-

tions. As shown, the non-renewal zip codes have a higher wildfire probability mean of 0.5466,

standard deviation of 0.2526, whereas the 100% renewal zip codes have a lower wildfire prob-

ability mean of 0.2989, standard deviation of 0.2776. Interestingly, the non-renewed classifi-

cation also includes grid-cell aggregates with quite low CNN wildfire probabilities suggesting

the possible mis-classification of zip codes as risky when our CNN models finds that they

are not. Similarly, the 100% renewed zip code aggregates include an upper tail of very high

expected out-of-sample wildfire occurrence probabilities again suggesting mis-classification

of zip codes as riskless where our CNN model finds that they are not.

Figure 17 presents a histogram of zip code renewal classifications organized by the deciles

of our spatiotemporal CNN estimates of each zip-code aggregate’s expected wildfire occur-

rence probability. Each of the 1,705 zip-codes aggregates of grid-cells are classified as either

non-renewal zip codes, if at least one P&C policy is not renewed, or 100% renewal zip codes,

if all of the State Farm policies are renewed. As shown in Figure 17, for the grid-cell aggre-

30https://www.insurance.ca.gov/01-consumers/120-company/04-mrktshare/2021/upload/

Top25grps2021wa_Revised.pdf
31See https://news.ambest.com/pr/PressContent.aspx?refnum=34559&altsrc=2.
32https://srp-prod-public-pdfs.s3-us-west-2.amazonaws.com/33f3f200-083c-560f-8b03-

f1cc1f939577
33https://srp-prod-public-pdfs.s3-us-west-2.amazonaws.com/33f3f200-083c-560f-8b03-

f1cc1f939577
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Zip codes with at least one non-renewed policy Zip codes 100% renewed policies

CNN wildfire expected probability in 2021 CNN wildfire expected probability in 2021

count 272 1433
mean 0.5466 0.2989
std 0.2526 0.2776
min 0.0031 0
25% 0.3703 0.0255
50% 0.5956 0.2165
75% 0.7443 0.5545
max 0.9564 0.9405

Table 7: Summary statistics for the 2021 spatiotemporal CNN expected out-
of-sample zip code aggregate grid-cell wildfire probabilities in non-renewed vs.
renewed zip codes by State Farm. We calculate the fire probabilities at the zip codes
level by aggregating the cell-level results.

gates where our CNN expected wildfire probabilities were 0%, State Farm renewed nearly

all of the policies in those locations. However, for our CNN expected probabilities of wild-

fire between 50% and 70%, despite the risks of wildfire occurrence in those locations, State

Farm mostly renewed their policies. Surprisingly, for the zip codes aggregates with an 80%

probability of occurrence, State Farm’s eligibility assignment appears nearly random with

50% of the zip-codes with these high risk probabilities being renewed and 50% of the policies

not being renewed. Of course, we are comparing two modeled results, State Farm’s to ours.

Nevertheless, given State Farm’s dire fire loss-rate performance in 2021, it does appear that

the modeling technology that they relied upon for both fire-peril pricing and eligibility crite-

ria served them very poorly. At a minimum, this evidence suggests that these likely modeling

anomalies should be an important public-policy focus for improving our understanding and

vetting procedures for wildfire occurrence modeling by the U.S. P&C industry.
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Figure 17: Histogram of State Farms P&C classifications of policy renewals and non-renewals
from Spatiotemporal CNN expected 2021 out-of-sample estimate of wildfire occurrence prob-
abilities
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7 Conclusions

Wildfire risks are escalating at a very rapid pace in California in part driven by climatologi-

cal factors such rising maximum temperatures from May to October in the Western States,

increasing urbanization in risk prone locations, and global forces like El Niño and La Niña

that affect drought cycles and snow fall during winter months. Given the very large eco-

nomic costs associated with wildfires, property and casualty (P&C) insurance companies

in California are increasingly finding themselves at the edge of financial survivability. In

part, their financial problems have arisen from inherent moral hazard problems associated

with insurance as well as legal and institutional frictions that make it difficult for insurance

companies to spread risk over time.

More uniquely, California has a self-inflicted regulatory problem that has required wildfire

insurers to set rates for future annual catastrophic coverage as the fraction of damages

accrued from the 20-year historical mean rather than based on forward looking statistical, or

actuarial, models. Additionally, the California Department of Insurance does not allow for

the costs, or changes in the cost, of reinsurance risk to be included in insurer rate requests.

As a result, California’s annual rates now rank next to the lowest in the U.S. leading to

insurance company fragility that threatens the future ability of California homeowners to

successfully rebuild after fires or even to have access to the mortgage markets.

Since the prohibitions on actuarial models is scheduled to be lifted in December of 2024,

this paper proposes a new class of actuarial modelling for wildfire occurrence risk based on

spatiotemporal Convolutional Neural Networks (CNNs). We propose that these models are

uniquely suited to forecast wildfires across the state of California based on highly imbalanced

data and numerous important causal features that are characterized by heavily right-skewed

distributions. CNNs capture both spatial and temporal dependencies and can identify corre-

lations between neighboring data points in a time series. We find that spatiotemoral CNNs

significantly outperforms logistic regression in estimating the likelihood of wildfire. Using our

fire-likelihood estimates, we estimate expected annual fire-related property losses for thou-

sands of grid-cells across the state. We find wide variation in the pre-conditions of wildfire

and the estimated probability of wildfire occurrence across the northern and southern areas

of the state. Overall we find a total estimated out-of-sample expected loss for 2021 that

closely matches the observed cost of wildfires that year. Finally, we discuss the implications

of our results for the future financial well-being of the U.S. and California P&C insurance

industry and the likely harms to homeowners from modeled-based eligibility classifications

that are being applied by the largest carrier in the State. With the partial lifting of actuarial

model prohibitions in California, future work should be able to apply our CNN wildfire es-
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timates to develop economically justifiable premium reductions in exchange for homeowner

mitigation investments. These investments should significantly reduce the risk of property

losses from wildfire despite the growing external pre-conditions of these risks and property-

level mitigation should better align the incentives of P&C insurers, banks, and homeowners,

thus reducing moral hazard.
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Appendix

A Correlation matrix for gridMET meterology data

pr sph rmin rmax fm100 fm1000 etr pet vpd tmmn tmmx srad vs

pr 1 0.04 0.39 0.23 0.38 0.3 -0.25 -0.25 -0.22 -0.14 -0.25 -0.29 0.33
sph 0.04 1 0.25 0.33 0.07 -0.06 0.27 0.34 0.22 0.61 0.48 0.33 0
rmin 0.39 0.25 1 0.8 0.87 0.74 -0.67 -0.63 -0.69 -0.4 -0.62 -0.48 0.24
rmax 0.23 0.33 0.8 1 0.83 0.67 -0.6 -0.56 -0.7 -0.46 -0.53 -0.35 0.19
fm100 0.38 0.07 0.87 0.83 1 0.88 -0.73 -0.72 -0.73 -0.56 -0.69 -0.57 0.21
fm1000 0.3 -0.06 0.74 0.67 0.88 1 -0.67 -0.65 -0.69 -0.57 -0.67 -0.49 0.18
etr -0.25 0.27 -0.67 -0.6 -0.73 -0.67 1 0.99 0.86 0.77 0.86 0.79 0.09
pet -0.25 0.34 -0.63 -0.56 -0.72 -0.65 0.99 1 0.85 0.78 0.87 0.85 0.05
vpd -0.22 0.22 -0.69 -0.7 -0.73 -0.69 0.86 0.85 1 0.83 0.9 0.59 -0.17
tmmn -0.14 0.61 -0.4 -0.46 -0.56 -0.57 0.77 0.78 0.83 1 0.91 0.57 -0.12
tmmx -0.25 0.48 -0.62 -0.53 -0.69 -0.67 0.86 0.87 0.9 0.91 1 0.69 -0.2
srad -0.29 0.33 -0.48 -0.35 -0.57 -0.49 0.79 0.85 0.59 0.57 0.69 1 -0.05
vs 0.33 0 0.24 0.19 0.21 0.18 0.09 0.05 -0.17 -0.12 -0.2 -0.05 1

Table 8: Correlations between gridMET climate variables. Label key: precipitation
(pr), specific humidity (sph), minimum relative humidity (rmin), maximum relative humid-
ity (rmax), fuel moisture over 100 hours (fm100), fuel moisture over 1000 hours (fm1000),
reference evapotranspiration — Alfalfa (etr), reference evaportranspiration — Grass (pet),
vapor pressure deficit (vpd), minimum air temperature (tmmn), maximum air temperature
(tmmx), surface radiation (srad), wind speed at 10m (vs)

B Variable definitions for the loss-given-fire regression

variable count mean std min max

Indicator: Built before 2008 codes 23629 0.9738 0.1598 0 1
Building Age 23629 42.9303 20.419 1 120
Elevation 23629 463.0631 263.351 1.6841 2255.453
Aspect 23629 0.3262 0.6417 -1 1

Housing density 23629 229.9863 159.6621 1.2346 1370.3704
Indicator: WUI Intermix 23629 0.5722 0.4948 0 1
Indicator: WUI Interface 23629 0.3394 0.4735 0 1

Table 9: Variable definitions and summary statistics.
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of machine learning algorithms in forest fires science, Applied Sciences 13, 2–15.

Apt, Jerome, Dennis Epple, and Fallaw Sowell, 2023, Forest fires: Why the large year-to-year

variation in forests burned?, Working Paper 31738, NBER.

Balch, Jennifer K., Bethany A. Bradley, John T. Abatzoglou, R. Chelsea Nagy, Emily J.

Fusco, and Adam L. Mahood, 2017, Human-started wildfires expand the fire niche across

the United States, Proceedings of the National Academy of Science 114, 2946–2951.

Baylis, Patrick W., and Judson Boomhower, 2021, Mandated vs. voluntary adaptation to

natural disasters: The case of U.S. wildfires, Working Paper 29621, NBER.

Billmire, Michael, Nancy H. F. French, Tatiana Loboda, R. Chris Owen, and Marlene Tyner,

2014, Santa Ana winds and predictors of wildfire progression in Southern California,

International Journal of Wildland Fire 23, 1119–1129.

Biswas, Siddhartha, Mallick Hossain, and David Zink, 2023, California wildfires, prop-

erty damage, and mortgage repayment, Working Paper 23-05, Federal Reserve Bank of

Philadelphia.

51



Boomhower, Judson, Meredith Fowlie, Jacob Gellman, and Andrew Plantinga, 2024, How

are insurance markets adapting to climate change? Risk selection and regulation in the

market for homeowners insurance, Working Paper 32625, NBER.

Bowers, Carrie Lynn, 2018, The Diablo Winds of Northern California: Climatology and

Numerical Simulations , Master’s thesis, San Jose State University.

Brey, Steven J., Elizabeth A. Barnes, Jeffrey R. Pierce, Christine Wiedinmyer, and Emily V.

Fischer, 2018, Environmental conditions, ignition type, and air quality impacts of wildfires

in the southeastern and western United States, Earth’s Future 6, 1442–1456.

Brinkmann, Peggy, Nancy Watkins, Cody Webb, Dave Evans, Gabriele Usan, Michael

Glavan, Lillian Zhang, Carolyn Prescott, Tom Larsen, and Grace Lee, 2022, Catastrophe

models for wildfire mitigation: Quantifying credits and benefits to homeowners and com-

munities, Research Paper, Casualty Actuarial Society.

Brooks, Matthew L., and John R. Matchett, 2006, Spatial and temporal patterns of wildfires

in the Mojave Desert, 1980–2004, Journal of Arid Environments 67, 148–164.

Buechi, Hanna, Paige Weber, Sarah Heard, Dick Cameron, and Andrew J. Plantinga, 2021,

Long-term trends in wildfire damages in California, International Journal of Wildland Fire

30, 757–762.

Burke, Marshall, Anne Discoll, Sam Heft-Neal, Jiani Xue, Jennifer Burney, and Michael

Wara, 2021, The changing risk and burden of wildfire in the United States, PNAS 118,

1–6.

Calhoun, Kendall L., Melissa Chapman, Carmen Tubbesing, Alex McInturff, Kaitlyn M.

Gaynor, Amy Van Scoyoc, Christine E. Wilkinson, Phoebe Parker-Shames, David Kurz,

and Justin Brashares, 2022, Spatial overlap of wildfire and biodiversity in California high-

lights gap in non-conifer fire research and management, Diversity and Distributions 28,

529–541.

Cardil, Adrián, Marcos Rodrigues, Joaquin Ramierz, Sergio de-Miguel, Carles A. Silva,

Machela Mariani, and Davide Ascoli, 2021, Coupled effects of climate teleconnections

on drought, Santa Ana winds and wildfires in southern California, Science of the Total

Environment 756, 1–8.

Casolaro, Angelo, Vincenzo Capone, Gennaro Iannuzzo, and Francesco Camastra, 2023,

Deep learning for time series forecasting: Advances and open problems, Information 14,

598.

52



Chegini, Taher, Hong-Yi Li, and L. Ruby Leung, 2021, HyRiver: Hydroclimate data re-

triever, Journal of Open Source Software 6, 1–3.

Chen, Bin, and Yufang Jin, 2022, Spatial patterns and drivers for wildfire ignitions in

California, Environmental Research Letters 17, 055004.

Chen, Bin, Yufang Jin, Erica Scaduto, Max A. Moritz, Michael L. Goulden, and James T.

Randerson, 2021, Climate, fuel, and land use shaped the spatial pattern of wildfire in

California’s Sierra Nevada, Journal of Geophysical Research: Biogeosciences 126, 1–18.

Chen, Liuyi, Bocheng Han, Xuesong Wang, Jiazhen Zhao, Wenke Yang, and Zhengyi Yang,

2023, Machine learning methods in weather and climate applications: A survey, Applied

Sciences 13, 12019.

Cleveland, William S., 1979, Robust locally weighted regression and smoothing scatterplots,

Journal of the American Statistical Association 74, 829–836.

Cooke, Roger M., Daan Nieboer, and Jolanta Misiewicz, 2014, Fat-Tailed Distributions:

Data, Diagnostics and Dependence, volume 1 (John Wiley & Sons).

Cruciata, Giorgio, Liliana Lo Presti, Gabriele Ajello, Paolo Cicero, Giacomo Corvisieri,

and Marco La Cascia, 2024, Wildfires classification: A comparative study, in Image

Analysis and Processing — ICIAP 2023 Workshops: Udine, Italy, September 11–15, 2023,

Proceedings, Part I , 62–73 (Springer-Verlag, Berlin, Heidelberg).

Dennison, Philip E., and Max A. Moritz, 2009, Critical live fuel moisture in chaparral

ecosystems: A threshold for fire activity and its relationship to antecedent precipitation,

International Journal of Wildland Fire 18, 1021–1027.

Dennison, Philip E., Max A. Moritz, and Robert S. Taylor, 2008, Evaluating predictive mod-

els of critical live fuel moisture in the Santa Monica mountains, California, International

Journal of Wildland Fire 17, 18–27.

Diaz, Adam, 2022, A Contribution to the Statistical Analysis of Climate-Wildfire Interaction

in Northern California, Ph.D. thesis, Clemson University.

DiMiceli, Charlene, John Townshend, Mark Carroll, and Robert Sohlberg, 2021, Evolution

of the representation of global vegetation by vegetation continuous fields, Remote Sensing

of Environment 254, 112271.

53



Dixon, Dan J., Yunzhe Zhu, Christopher F. Brown, and Yufang Jin, 2023, Satellite detection

of canopy-scale tree mortality and survival from California wildfires with spatio-temporal

deep learning, Remote Sensing of Environment 298, 113842.

Duclos, Philippe, Lee M. Sanderson, and Michael Lipsett, 1990, The 1987 forest fire disaster

in California: Assessment of emergency room visits, Archives of Environmental Health:

An International Journal 45, 53–58.

First Street Foundation, 2022, The First Street Foundation wildfire model.

Flannigan, M. D., B. M. Wotton, G. A. Marshall, W. J. DeGroot, J. Johnston, N. Jurko, and

A. S. Cantin, 2016, Fuel moisture sensitivity to temperature and precipitation: Climate

change implications, Climatic Change 134, 59–71.

Flannigan, Mike D., Meg A. Krawchuk, William J. de Groot, B. Mike Wotton, and Lynn M.

Gowman, 2009, Implications of changing climate for global wildland fire, International

Journal of Wildland Fire 18, 483–507.

Gershunov, Alexander, Janin Guzman Morales, Benjamin Hatchett, Kristen Guirguis,

Rosana Aguilera, Tamara Shulgina, John T. Abatzoglou, Daniel Cayan, David Pierce,

Park Williams, Ivory Small, Rachel Clemesha, Lara Schwarz, Tarik Benmarhnia, and

Alex Tardy, 2021, Hot and cold flavors of Southern California’s Santa Ana winds: Their

causes, trends, and links with wildfire, Climate Dynamics 57, 2233–2248.

Goss, Michael, Daniel L. Swain, John T. Abatzoglou, Ali Sarhadi, Crystal A. Kolden, A. Park

Williams, and Noah S. Diffenbaugh, 2020, Climate change is increasing the likelihood of

extreme autumn wildfire conditions across California, Environmental Research Letters 15,

505–546.

Guo, Shengnan, Youfang Lin, Shijie Li, Zhaoming Chen, and Huaiyu Wan, 2019, Deep

spatial-temporal 3D convolutional neural networks for traffic data forecasting, IEEE

Transactions on Intelligent Transportation Systems 20, 3913–3926.

Guzman-Morales, Janin, 2018, Santa Ana Winds of Southern California: Historical

Variability and Future Climate Projections , Ph.D. thesis, University of California San

Diego.

Holmes, Thomas P., Jr. Huggett, Robert J., and Anthony L. Westerling, 2008, Statistical

analysis of large wildfires, in T. P. Holmes, ed., The Economics of Forest Disturbances:

Wildfires, Storms, and Invasive Species , 59–77 (Springer Science).

54



Ismail, Fathima Nuzla, and Shanika Amarasoma, 2023, One-class classification-based ma-

chine learning model for estimating the probability of wildfire risk, Procedia Computer

Science 222, 341–352.

Jaffee, Dwight, and Thomas Russell, 2013, Catastrophe insurance, capital markets, and

uninsurable risks, Journal of Risk and Insurance 64, 205–230.

Jain, Piyush, Sean C. P. Coogan, Sriram Ganapathi Subramanian, Mark Crowley, Steve

Taylor, and Mike D. Flannigan, 2020, A review of machine learning applications in wildfire

science, Environmental Review 28, 478–505.

Jergler, Don, 2021, Grim California wildfire outlook has insurers forking over big bucks for

modeling, The Insurance Journal June 18.

Jin, Yufang, James T. Randerson, Nicolas Faivre, Scott Capps, Alex Hall, and Michael L.

Goulden, 2013, Contrasting controls on wildland fires in Southern California during periods

with and without Santa Ana winds, Journal of Geophysical Research: Biogeosciences 119,

432–450.

Joseph, Maxwell B., MatthewW. Rossi, Nathan P. Mietkiewicz, Adam L. Mahood, Megan E.

Cattau, Lise Ann St. Denis, R. Chelsea Nagy, Virinia Iglesias, John T. Abatzoglou, and

Jennifer K. Balch, 2019, Spatiotemporal prediction of wildfire size extremes with Bayesian

finite sample maxima, Ecological Applications 29, 1266–1281.

Kahn, Mathew, Amine Ouzad, and Erkan Yönder, 2024, Adaptation using financial markets:

Climate risk diversification through securitization, Working Paper 32244, NBER.

Kalashnikov, Dmitri A., John T. Abatzoblou, Nicholas J. Nauslar, Daniel L. Swain, Danielle

Touma, and Deepti Singh, 2022, Meteorological and geographical factors associated with

dry lightning in central and northern California, Environmental Research: Climate 1,

025001.

Kashinath, K., M. Mustafa, A. Albert, J-L. Wu, C. Jiang, S. Esmaeilzadeh,

K. Asissadenesheli, R. Wang, A. Chattopadhyay, A. Singh, A. Manepalli, D. Chirila,

R. Yu, R. Walters, B. White, H. Xiao, H. A. Tchelepi, P. Marcus, A. Anandkumar,

P. Hassanzadeh, and Prabhat, 2020, Physics-informed machine learning: Case studies for

weather and climate modelling, Philosophical Transactions A, Royal Society 379, 1–34.

Kearns, Edward J., David Saah, Carrie R. Levine, Chris Lautenberger, Owen M. Doherty,

Jeremy R. Porter, Michael Amodeo, Carl Rudeen, Kyle D. Woodward, Gary W. Johnson,

55



Kel Markert, Evelyn Shu, Neil Freeman, Mark Bauer, Kelvin Lai, Ho Hsieh, Bradley

Wilson, Beth McClenny, Andrea McMahon, and Farrukh Chishtie, 2022, The construction

of probabilistic wildfire risk estimates for individual real estate parcels for the contiguous

United States, Fire 5, 377–386.

Keeley, Jon E., Janin Guzman-Morales, Alexander Gershunov, Alexandra D. Syphard,

Daniel Cayan, David W. Pierce, Michael Flannigan, and Tim J. Brown, 2021, Ignitions

explain more than temperature or precipitation in driving Santa Ana wind fires, Science

Advances 7, 1–9.

Keeley, Jon E., and Alexandra D. Syphard, 2018, Historical patterns of wildfire ignition

sources in California ecosystems, International Journal of Wildland Fire 27, 781–799.

Keeley, Jon E., and Alexandra D. Syphard, 2021, Large California wildfires: 2020 fires in

historical context, Fire Ecology .

Kestelman, Stephanie, 2024, Environmental externalities of urban growth: Evidence from

the California wildfires, Working paper, Harvard University.

Kochanski, Adam K., Mary Ann Jenkins, Jan Mandel, Jonathan D. Beezley, and Steven K.

Krueger, 2013, Real time simulation of 2007 Santa Ana fires, Forest Ecology and

Management 294, 136–149.

Koh, Jonathan, François Pimont, Jean-Luc Dupuy, and Thomas Opitz, 2023,

Sptatiotemporal wildfire modeling through point processes with moderate and extreme

marks, The Annals of Applied Statistics 17, 560–582.

Kousky, Carolyn, 2019, The role of natural disaster insurance in recovery and risk reduction,

Annual Review of Resource Economics 11, 399–418.

Kousky, Carolyn, and Roger M. Cooke, 2009, Climate change and risk management,

Technical Report RFF DP 0903-REV, Resources for the Future.

Kumar, Lalit, Andrew K. Skidmore, and Edmund Knowles, 1997, Modelling topographic

variation in solar radiation in a GIS environment, International Journal of Geographical

Information Science 11, 475–497.

Lai, Gengke, Xingwen Quan, Marta Yebra, and Binbin He, 2022, Model-driven estimation

of closed and open shrublands live fuel moisture content, GIScience & Remote Sensing

59, 1837–1856.

56



Li, Shu, and Tirtha Banerjee, 2021, Spatial and temporal pattern of wildfires in California

from 2000 to 2019, Scientific Reports 11, 8779.

Linn, Rodman, Judith Winterkamp, Carleton Edminster, Jonah J. Colman, and William S.

Smith, 2020, The strong, dry winds of central and northern California: Climatology and

synoptic evolution, Weather and Forecasting 316, 2163–2178.

Liu, Lu, 2022, The demand for long-term mortgage contracts and the role of collateral,

Working Paper, Wharton.

Liu, Yi-Chin, Pingkuan Di, Shu-Hua Chen, ZueMeng Chen, Jiwen Fan, John DaMassa,

and Jeremy Avise, 2021, Climatology of Diablo winds in Northern California and their

relationships with large-scale climate variables, Climate Dynamics 56, 1335–1356.

MacDonald, Glen, Tamara Wall, Carolyn A. F. Enquist, Sarah R. LeRoy, John B. Bradford,

David D. Breshears, Timothy Brown, Daniel Cayan, Chunyu Dong, Donald A. Falk,

Erica Fleishman, Alexander Gershunov, Molly Hunter, Rachel A. Loehman, Phillip J.

van Mantgem, Beth Rose Middleton, Hugh D. Safford, Mark W. Schwartz, and Valerie

Trouet, 2023, Drivers of California’s changing wildfires: A state-of-the-knowledge synthe-

sis, International Journal of Wildland Fire 32, 1039–1058.

Makridakis, Spyros, Evangelos Spiliotis, Vassilios Assimakopoulos, Artemios-Anargyros

Semenoglou, Gary Mulder, and Konstantinos Nikolopoulos, 2023, Statistical, machine

learning and deep learning forecasting methods: Comparisons and ways forward, Journal

of the Operational Research Society 74, 840–859.

Mallinis, Giorgos, Marius Petrila, Ioannis Mitsopoulos, Adrien Lorent, Stefan Neagu, Bogdan

Apostol, Vladimir Gancz, Popa Ionel, and Johann Georg Goldammer, 2019, Geospatial

patterns and drivers of forest fire occurrence in Romania, Applied Spatial Analysis and

Policy 12, 773–795.

McClung, Brandon, and Clifford F. Mass, 2007, Coupled influences of topography and wind

on wildland fire behaviour, International Journal of Wildland Fire 16, 183–195.

Miller, J. D., C. N. Skinner, H. D. Safford, E. E. Knapp, and C. M. Ramirez, 2012, Trends

and causes of severity, size, and number of fires in northwestern California, USA, Ecological

Applications 22, 184–203.

Oh, Sangmin, Ishita Sen, and Ana-Maria Tenekedjieva, 2024, Pricing of climate risk insur-

ance: Regulation and cross-subsidies, Working Paper, Columbia Business School.

57
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