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Overview

I Penalized two-pass regression with time-varying factor loadings:

1. First pass enforces sparsity for the time-variation drivers + no-arbitrage
restrictions

2. The second pass delivers risk premia estimates to predict equity excess
returns

I Monte Carlo and empirical results corroborate the method
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The Structural Model

1. Factor model with time-varying intercepts and loadings

Rit = ait + b
′
itf t + εit

– f t takes values on RK

– E(εit|Ft−1) = 0 −→ linearity is assumed

– C(εit, fkt|Ft−1) = 0

– Asset pricing restriction: ait = b
′
itνt, νt unique and Ft−1−measurable

−→ E(Rit|Ft−1) = b
′
itλt, λt = νt + E(f t|Ft−1)
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The Structural Model

2. Sparse time-varying factor loadings

bit = Ai +BiZt−1 +C iZ it−1

– Ai ∈ RK does not contain null elements

– Bi ∈ RK×p and Ci ∈ RK×q are sparse matrices of coefficients

– Zt−1 takes values on Rp and is a vector of common instruments

– Zit−1 takes values on Rq and is a vector of firm-specific characteristics
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The Structural Model

3. Sparse time-varying risk premia

λt = Λ0 +Λ1Zt−1

E(f t|Ft−1) = F 0 + F 1Zt−1

– Λ0 ∈ RK and F 0 ∈ RK do not contain null-elements

– Λ1 ∈ RK×p and F 1 ∈ RK×p are sparse matrices of coefficients
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The Structural Model
Some Comments (1/2)

1. The setup of the paper is low-dimensional in the sense that K,
p and q are assumed to be known and fixed. This should be
made very clear in the very beginning of the paper.

2. Therefore, why do we need sparsity?
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The Structural Model
Some Comments (2/2)

1. Is the martingale difference assumption on εit (linearity)
necessary? Why not just assuming that the errors are
uncorrelated?

– Gu, Kelly and Xiu (RFS, 2020) found compelling evidence of
nonlinearities in asset pricing models.

2. Under model assumptions all time dependence on the returns is
given by the factor dynamics and the time-varying structure of
the intercept and the loadings. The authors may wish to discuss
a bit about this in the paper.
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The Reduced Form

Putting things together...

Rit = A
′
i(Λ0 − F 0) +A

′
if t︸ ︷︷ ︸

time-invarying component

+A′i(Λ1 − F 1)Zt−1 +Z
′
t−1B

′
i(Λ0 − F 0)

+Z ′it−1C
′
i(Λ0 − F 0)

+Z ′t−1B
′
i(Λ1 − F 1)Zt−1 +Z

′
it−1C

′
i(Λ1 − F 1)Zt−1

+Z ′t−1B
′
if t +Z

′
it−1C

′
if t + εit
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The Reduced Form

Rit = β
′
ixit + εit

I xit is a nonlinear function of f t, Zt−1, and Zit−1

I Model is linear in the parameters but nonlinear in the original
variables

I no-arbitrage assumption imposes restrictions on βi
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Estimation
First-Pass Regression

I Estimate βi in

Rit = β
′
ixit + εit

by
– “unrestricted” adaptive LASSO (aLASSO): no-arbitrage is not imposed
– adaptive latent group LASSO (aOGL): no-arbitrage is imposed

I Only time-varying terms are shrunk −→ shrinkage towards the
constant model

I Result: under some high-level assumptions, the aOGL estimator
converges to zero for the truly zero parameters and to a
Gaussian random variable for the remaining ones
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Estimation
Some Comments on the First-Pass Regression

1. High-level assumptions on xit. I miss more primitive
assumptions on Zt−1 and Zit−1.

– For instance what are the moment structure of these random vectors?

– Are they time-dependent? α-mixing, for example?

– For example, Assumption B.1 bounds xit. Is this expected given the
nature of the data in empirical applications?

– In empirical applications, Zt−1 and Zit−1 can be highly persistent and
non-Gaussian. For example, inflation or volatility

– Unbalanced regressions
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Estimation
Some Comments on the First-Pass Regression

2. The role of sparsity

– Sparsity does not seem necessary to derive the result. Is this necessary
for the no-arbitrage restriction?

– What does happen if a ridge penalty is used instead?

3. Discuss more the role of the initial estimator

4. Although model selection consistency is not derived in the
paper, this could be a nice additional result

5. It is difficult to follow the proofs without having the assumptions
in GOS. You should state them at least in the Appendix
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Estimation
Second-Pass Regression

I Smart estimation to recover ν

I Estimation of the factor dynamics by aLASSO

I Result: the estimator for ν is consistent under some high-level
conditions and both n, T diverging

I Result: the estimator for Λ is consistent under some high-level
conditions and both n, T diverging
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Estimation
Some Comments on the Second-Pass Regression

1. Sparsity again: why do we need sparsity on the factor dynamics?

2. Why aLASSO instead of just LASSO? It seems that correct
variable selection is not an issue here, right?

3. It is not clear if the penalty parameter is the same for all
estimations or not
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Some Comments on the Simulations

1. Is the DGP too restrictive? Relax the normality assumption of
the errors

2. Both the aLASSO and the aOLG methods strongly under-select
the relevant variables. This looks very strange to me. Smallish
coefficients?

3. Related to the previous comments, it would be nice to get an
idea of the order of magnitude of the nonzero coefficients. Are
the RMSEs large or not?

4. The aLASSO should be also consistent. Why is the
performance so “bad”? Small samples?

5. The MAPEs in Table 3 seem quite similar. Any comments?
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Some Comments on the Simulations

1. Very different relative performance depending on the sample
considered. Structural breaks or just the size of the estimation
period?

2. The λt&ν model seems very competitive specially during the
first subsample. Structural breaks or just the size of the
estimation period?

3. What happens if nonlinear ML models as in Gu, Kelly, and Xiu
(RFS, 2020) are considered?
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Some General Comments

1. The paper will benefit from having a guide to empirical
implementation.

2. Positioning the paper wrt the recent literature on factor zoo
would be interesting

3. Also, it would be nice to compare with Projected/Instrumented
PCA (factors are not observed)

4. Idea: Combine the results in Fan, Masini, and Medeiros (2021)
with the no-arbitrage restrictions
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Some General Comments

5. And finally,

THIS IS A GREAT PAPER!
CONGRATULATIONS!
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VERY Minor Comments

I In page 4, paragraph after equation (1), Zt−1 is not defined

I Assumption A.1: “sparse matrices of coefficients” and not
“sparse matrices of coefficient”

I Typo in equation (9): δg should be inside the summation
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