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Abstract

In many settings, organizations seek to target products or services to constituents using pre-
existing information. In this paper, we estimate the value of targeting in the context of a large-scale
field experiment with over 53,000 college students, where the goal was to use “nudges” to encourage
students to renew their financial aid applications before a non-binding deadline. Our preferred
approach uses a causal forest to estimate heterogeneous treatment effects, and then assigns students
to treatment according to those estimated to have the highest treatment effects. We compare this
to a policy where we target those students with a low predicted probability of renewing financial
aid in absence of the treatment. Targeting based on predicted outcomes is clearly not optimal,
but it is a common strategy used by organizations in practice when a treatment is new or there is
limited historical data. We show that the causal method outperforms the predictive approach. We
estimate that assigning using the causal method does better than assigning nudges randomly, while
assigning based on low predicted baseline does significantly worse. In terms of the effectiveness of
nudges, the estimated treatment effect heterogeneity from the random forest remains modest and
noisy: students with an above-median estimated treatment effect are 25% to 65% more likely to
file relative to below-median students across two baseline specifications and two experiment years.
Our analysis suggests that the reminders to renew financial aid work best for students who would
have been relatively likely to file for renewal even in the absence of the nudge, while they remain
ineffective for students who are unlikely to file at baseline and are likely to drop out.
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tational Applications for Behavioral Science” project with ideas42. Matthew Schaelling provided exceptional research
assistance. For their support we also thank Octavio Medina, Rebecca Nissan, Rachel Rosenberg, and Josh Wright of
ideas42, Vitor Hadad and Henrike Steimer of the Golub Capital Social Impact Lab at Stanford GSB, and the Office of
Institutional Research and Assessment of the City University of New York.
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1 Introduction

A growing number of randomized experiments set out to measure the effectiveness of behaviorally-
informed nudges. Typically, these experiments are designed and analyzed to measure whether a nudge
works well on average. In this paper, we utilize causal machine learning to move beyond average
treatment effects towards optimal targeting of nudges. In a large-scale experiment that randomized
behaviorally-informed reminders to increase student financial aid renewal applications, we estimate
not just whether the nudge worked on average but whether it worked for some students better than
for others. We then ask how such heterogeneous treatment effect estimates can improve the delivery
of products and services.

Our application considers data from a field experiment among over 53,000 college students. The
experiment aimed to measure the causal effect of behavioral nudges on timely applications for financial
aid. Across two randomized controlled trials run in 2017 and 2018 by ideas42 and the City University
of New York, enrolled students were randomly assigned to receive behaviorally informed text and email
reminders about renewing their federal financial aid. The average treatment effect of the behavioral
nudges was noteworthy. Students who received nudges were on average 6.4 ± 0.6 (2017) and 12.1 ±
0.7 (2018) percentage points more likely to submit their Free Application for Federal Student Aid
(FAFSA) forms by the priority deadline, increasing early filing rates from 37% to 43% and 38% to
50%, respectively.

For whom were the nudges most effective, and thus whom should we target if there is a limited budget?
A priori, it is not obvious. There are likely some students who are not affected by nudges, perhaps
because they are already committed to file; and there are likely other students who are committed to
not file, for example if they do not plan to attend the next year. Treatment effects will only be positive
for those who are not yet committed. Within that group, there may be some types of students who
are not responsive to nudges like the ones considered in our experiment.

The problem of whom to target for an intervention arises in many settings, ranging from prioritization
of salespeople to allocation of advertising spend. A common approach in practice is based on predicting
which individuals are most at risk of some undesirable outcome, such as customer churn. Predictive
approaches are attractive because they can be applied with observational, historical data without the
need to run an experiment; they can be used even for a treatment that has never been tried before.
In the context of nudges to file financial aid forms, we could imagine forming a hypothesis about
which type of student would be most influenced by a nudge and building a model to predict that
outcome using data about student behavior in the absence of the treatment. If we hypothesized that
students who were otherwise unlikely to file would be most influenced by the nudge, we would target
the students with the lowest predicted probability of filing in the absence of the treatment.

However, in general it is an empirical question as to what type of student is most likely to be in-
fluenced. In this paper, we use causal machine learning estimate how treatment effects vary with
individual characteristics, and we estimate the benefits of a policy that (counterfactually, under a bud-
get constraint) assigns students with the highest treatment effects to receive the nudge. We further
estimate the differences in expected outcomes between this policy and three alternative counterfactual
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policies: (i) targeting students most likely to file, (ii) targeting those least likely to file, and (iii) random
selection. We find that the policy that targets treatment effects performs about as well as one that
targets students most likely to file, with both better than a random policy, while a policy that targets
those least likely to file does very poorly. This finding mirrors Ascarza (2018), who studies the effect
of a customer retention program on reducing churn in two field experiments, and shows that targeting
based on predicted churn performs considerably worse than targeting based on estimated treatment
effects.

Our results provide an example where naive targeting based on a machine-learning prediction of out-
comes (particularly, one that targeted those who might have seemed to need the nudges most) performs
substantially worse than targeting based on estimated treatment effect heterogeneity. On the other
hand, if we had correctly guessed that it was effective to target those who were already most likely
to file, we would have achieved similar performance. Our findings highlight the value of augmenting
machine-learning algorithms, which provide powerful prediction tools, with careful causal inference to
tackle policy problems. We also emphasize the role of an improved analytical toolkit in the design and
analysis of randomized field experiments.

These results suggest two general conclusions. First, it clarifies the importance of integrating causal
inference and randomized trials into machine learning to analyze and improve policy, rather than
relying on predictive tools based on non-experimental baseline data alone. Second, the effects of
treatment that are only small interventions, as is often the case for nudges, may not accrue mainly for
those with low baseline outcomes, but rather for those who would already have been likely to obtain
a better outcome in the absence of treatment – and just need to be “nudged” over the finish line.

What factors drive heterogeneity in treatment effects? We find that treatment effects vary systemat-
ically between students based on information available before reminders are sent. When using only
information available before the start of the semester, this variation is modest across both years: the
half of students with higher estimated treatment effects are, on average, around two (2017) or three
(2018) percentage points more likely to respond to treatment than the lower half. Once we incorporate
information available closer to the date reminders were sent, these differences become more pronounced
in the 2018 cohort, pushing the difference between those with below-median predicted effect and those
with above-median predicted effect to around seven percentage points.

There is no enrollment restriction on who can apply for FAFSA. Thus students could unenroll in a
given year yet remain eligible to apply for FAFSA for the subsequent academic year, and indeed it is
common for students to come and go from enrollment at CUNY, where many students are working
alongside their studies. However, students who drop out midyear may be not only be harder for
administrators to track but they may also be less likely to re-enroll for the subsequent academic year.
Using administrative data, we are able to identify students that were enrolled at the start of the
academic year yet dropped out by the time of the behavioral nudge treatment. For the randomized
experiment, students that were unenrolled were still eligible for the behavioral nudges. This feature of
the experimental design allows us to compare treatment effects conditional on predicted enrollment at
the time of the treatment.

We find that enrollment status, once it becomes available, is highly predictive of treatment effects.
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Students who are unenrolled at the time of the behavioral nudge campaign had smaller treatment
effects. Using administrative data from the early part of the academic year, when policymakers would
not know whether a student would be enrolled at the time of the nudge, we confirm that heterogeneity
is plausibly related to enrollment: ordering people by their predicted probability to enroll explains
a similar variation of treatment effects as estimated treatment effects themselves do. On the other
hand, once we restrict ourselves to those students who are still enrolled when the treatment is sent out,
we find only suggestive (2017) or no (2018) remaining systematic heterogeneity in treatment effects.
The importance of enrollment as a treatment effect moderator is also apparent when we inspect which
variables vary most with estimated treatment effects.

We then evaluate the heterogeneity our machine-learning approach was able to identify in terms of
its implications for improving policy delivery. With only early information available, improvements
over randomly targeting students are modest and comparable to the gain from sorting students by
predicted enrollment. Once additional information becomes available, including updated enrollment
information, the value of targeting increases. If we rank students by estimated treatment effects and
send reminders to the top 50%, we can achieve 65% of the increase in early FAFSA filing that we
would achieve by sending reminders to everybody. Once we consider only enrolled students, the only
improvement from targeting appears to arise from a few students that are estimated to have a very
small treatment effect and would thus not be targeted, but we cannot rule out that this latter result
is due to noise.

Our analysis uncovers important challenges in applying machine learning to improve the analysis and
targeting of nudges. The environment we study has a fairly low signal-to-noise ratio, and we find that
treatment effect estimates are unlikely to be well-calibrated. Thus, describing heterogeneity requires
additional diagnostic tools to avoid small-sample biases, such as group-wise analysis discussed by
Chernozhukov et al. (2019).

We move beyond describing the performance of machine-learning policies in terms of raw predictive
power and instead provide analogs to receiver-operating characteristic (ROC) diagnostics adapted to
the problem of treatment assignment, where the performance of the model is quantified in policy-
relevant units (following e.g. Rzepakowski and Jaroszewicz, 2012; Zhao et al., 2013; Hitsch and Misra,
2018).

We build upon a growing literature that combines causal estimation with prediction techniques from
machine learning (Mullainathan and Spiess, 2017; Athey and Imbens, 2019) and discusses the appli-
cation of machine learning to policy problems (Kleinberg et al., 2015). For the estimation of het-
erogeneous treatment effects, Athey and Imbens (2016) develop causal trees from regression trees
to find subgroups of individuals with different treatment effects. Wager and Athey (2018) combine
many such trees into a causal random forest, which Athey et al. (2019) extend to generalized random
forests. Chernozhukov et al. (2019) discuss the analysis of heterogeneous treatment effects with ar-
bitrary machine-learning estimators and suggest diagnostic tools. Hitsch and Misra (2018) consider
targeting policies derived from estimates of heterogeneous treatment effects and show how their effect
can be estimated from randomized trail data. Athey and Wager (2021) analyzes efficient estimation
of targeted policies with constraints on the policy class.
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We also connect to a literature on behaviorally-informed nudges (Sunstein and Thaler, 2008) and
their empirical validation. In the context of student financial aid, behavioral science has informed
multiple cost-effective strategies for increasing FAFSA submissions that the experiment we analyze
in this paper is based on. Castleman and Page (2016) show that a simple text-based intervention
that encouraged FAFSA submission increased sophomore year retention by 14%. ideas42 research at
Arizona State University showed that behaviorally informed student reminder emails, which include
devices to trigger loss aversion, plan making, and commitment, increased priority deadline FAFSA
renewal by 11 percentage points, from 29% to 40% (ideas42, 2016).

2 Experiment and Data

This paper analyzes data from a multi-year experiment conducted in New York City. Students were
randomly assigned to receive behaviorally informed text and email reminders to renew their federal
financial aid. The field experiment, run in 2017 and 2018 by ideas42 and the City University of New
York (CUNY), aimed at increasing applications for Free Application for Federal Student Aid (FAFSA)
financial support by the June 30 priority deadline. Students randomly assigned to the control group
received only business-as-usual emails from the college. Students assigned to the treatment groups
also received supplementary behavioral emails and text messages. These emails and text messages
were designed to trigger loss aversion, plan making, and commitment.1 Figure 1 shows example text
messages sent to students in the treatment group.

The experiment involved matriculated students from CUNY community colleges. Eligible students were
those who had not yet renewed FAFSA in February of the study year. The 2017 study sample includes
25,167 students from three community colleges, of which 50% were randomly assigned to treatment.
The 2018 sample includes 40,638 students from five community colleges, which were included in the
intervention in two batches: an early batch of 30,627, of which 45% were assigned to each of the
two treatment arms and 10% to control, and a late batch of 10,011 with a larger control group of
25% and roughly equal treatment groups. We pool the late and early cohorts from 2018 for a total
combined fraction of 86% treated across the two treatment arms. Throughout our analysis of 2018
data, we adjust estimates for the varying propensity scores between early and late cohorts by inverse
probability-weighted estimators.

Our data include baseline demographic, academic, and administrative information about the community-
college students in the experiment. On average, students were around 24 years old, with a considerable
standard deviation of almost seven years. Our sample includes more women than men, with 57% women
in the 2017 experiment, and 56% (early schools) and 53% (late schools) women in 2018. A plurality
of students was Hispanic (52% in 2017, 45% in 2018), followed by Black non-Hispanic students who
made up around a third of the student body in this study. Almost 20% of students were enrolled
part-time. Overall, we do not observe large imbalances between treatment and control groups; for
nine baseline characteristics we tested across the 2017 and 2018 cohorts, only one variable, GPA for

1During 2017, the experiment had one treatment arm. The two treatment arms in the 2018 experiment differed in
whether they used one-way texts or two-way texts that prompted students to respond. For this paper, we pool the two
treatment arms in the 2018 study.
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Figure 1: Example reminder text messages sent to students in the treatment group.
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late 2018 schools, is significantly different between treatment and control at the 5% level. Estimated
propensity scores are concentrated around their batch-wise mean and balanced between the respective
treatment and control groups.

Across the two randomized controlled trials, those who received the treatment interventions were on
average 6.4 ± 0.6 (2017) and 12.1 ± 0.7 (2018) percentage points more likely to submit their FAFSA
forms by the priority deadline, increasing early filing rates from 37% to 43% and 38% to 50%, re-
spectively. These estimates, which are based on simple averages between treatment and control units
within batches, are robust with respect to two alternative, augmented inverse propensity weighted
(AIPW) estimators that leverage covariate information to reduce noise. The first of these estimators
assumes constant propensity scores within batches, while the second corrects for possible imbalances
by estimating the propensity score. Both are based on random forest estimation of the outcome model
and propensity score.

3 Treatment-Effect Heterogeneity

Above we have documented a sizable average effect of behaviorally-informed reminders in this study.
In this section, we use machine-learning tools to estimate treatment effects as a function of available
individual covariates. We repeat the analysis for each study year (2017 and 2018) as well as for two sets
of explanatory covariates – first, those available at time of randomization before the spring semester,
and second, all information available halfway through the semester (which adds enrollment information
and additional academic records) just before reminders were sent out. We report tests and diagnostics
based on samples of 17,755 students for the 2017 study and 29,786 students for 2018. (A remaining
quarter of the data remains available as an additional hold-out sample for future validation, which we
do not use in the current study.)

In this study, our goal is to estimate conditional average treatment effects (CATEs), which are defined
as average treatment effects conditional on observed covariates. Before describing how we estimate
these treatment effects, we formally define the object of interest. We denote by Y ∈ {0, 1} the random
variable that expresses whether a student has filed by the priority deadline (Y = 1) or not (Y = 0),
and T ∈ {0, 1} for whether the student is in the treatment group (T = 1) or not (T = 0). We use
standard potential-outcomes notation and write Y (1) for the filing status a student would have had
had they been assigned to treatment, and Y (0) for the filing status had they been assigned to control.
The treatment of that student is then Y (1)− Y (0), and we are interested in how this treatment effect
varies with some baseline student characteristics X. Specifically, we aim to estimate the conditional
average treatment effect

τ(x) = E[Y (1)− Y (0)|X = x]

of students with characteristics X = x. When estimating τ(x), we face the challenge that for every
student we only observe one of the potential outcomes Y (1) and Y (0), namely the realized filing decision
Y = Y (T ) for their actual treatment status T . However, since treatment has been randomized, the
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realization of Y (1), Y (0) and X are independent of T , so we can identify treatment effects from
τ(x) = E[Y |T = 1, X = x] − E[Y |T = 0, X = x]. In words, while we cannot compare outcomes
within student, we can compare outcomes across similar students who have been treated or assigned
to control, which yields the same conditional average effect when treatment in a randomized trial.

We estimate heterogeneous treatment effects with machine learning. Since treatment effects Y (1)−Y (0)
are not observed and therefore cannot be predicted directly by standard machine-learning methods,
we employ the causal forest algorithm. The causal forest is an instance of generalized random forests
(Athey et al., 2019) that is specifically adapted to solve the causal-inference problem of estimating
conditional average treatment effects τ(x) in settings like ours. Causal forests recursively compute
multiple partitions of the covariate space based on treatment effect heterogeneity, so that estimated
average treatment effects vary as much as possible between subsets of the covariate space. To estimate
the CATE τ(x) for a particular vector x of covariates, a weighted average treatment effect

τ̂(x) =
∑
Tj=1 ŵj(x)Yj∑
Tj=1 ŵj(x) −

∑
Tj=0 ŵj(x)Yj∑
Tj=0 ŵj(x)

of nearby observations (Yj , Tj , Xj) is used, where weights ŵj(x) are based on how often observations
Xj share the same cell as the target vector x in different partitions. Moreover, because the process
of constructing the partition to estimating treatment effects uses a careful rule for sample splitting
(“honesty,” Wager and Athey, 2018) that ensures that Yi is not used in the estimation of ŵj(Xi), the
resulting estimates are guaranteed to be consistent and asymptotically normal.

Despite the theoretical guarantees, in practice the signal-to-noise ratio is often such that a very large
sample is required for the theory to be a useful guide. For more realistic sample sizes, estimates τ̂(x)
of CATEs τ(x) are often miscalibrated. For a particular covariate vector x, the estimates τ̂(x) may
be biased towards the overall average treatment effect τ = E[Y (1)−Y (0)], as there will not in general
be enough observations with similar covariate vectors to a particular target. On the other hand, in
a setting with very little true heterogeneity relative to the noise, sampling variation will still induce
a distribution of estimated treatment effects over different covariate vectors, potentially overstating
heterogeneity. Thus, it is important to assess the calibration of the estimates in a model-free way.

To do so, we first provide a calibration-based test for the existence of heterogeneous treatment effects
based on Chernozhukov et al. (2019). Across both years and both sets of covariates, those available
earlier and those later, we find statistically significant heterogeneity based on the slope estimate in a
cross-fitted calibration regression of actual outcomes Yi on treatment-effect estimates τ̂(Xi) interacted
with normalized treatment Ti − p, where p is the overall probability of being treated (Table 1).2 We
do not find any evidence for negative treatment effects, so reminders are unlikely to have caused any
students not to file by the priority deadline.

Although we find evidence of heterogeneity, the model is not perfectly calibrated (the slope coefficients
are substantially less than one), and as such we cannot assume that the magnitudes of our CATE

2To avoid biases, we estimate treatment effects τ̂(Xi) for units (Yi, Ti, Xi) within our sample by four-fold cross-fitting.
Specifically, we randomly divide the sample into four folds, and for an observation i in a given fold estimate their CATE
τ(Xi) by τ̂(Xi) using a causal forest τ̂ fitted only on the other folds. We then run the calibration regression by fold and
aggregate the resulting coefficient and standard error estimates.
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Study year Covariates used for estimation Slope estimate SE t-stat p-value
2017 Early (before semester) 0.4733 0.2545 1.8601 0.0314

Late (mid-semester) 0.4767 0.2437 1.9561 0.0252
2018 Early (before semester) 0.5555 0.3212 1.7296 0.0419

Late (mid-semester) 0.7338 0.2932 2.5024 0.0062

Table 1: Slope coefficient estimates for the calibration regression of actual outcomes on treatment-effect
estimates interacted with normalized treatment following Chernozhukov et al. (2019).

estimates τ̂(x) are unbiased for τ(x).

Despite that, the CATE estimates may be reliable for assessing which units have higher treatment
effects than others. Although it is impossible to assess the accuracy of a treatment effect estimate for
a single observation, since we can only observe the outcome Y for an individual with one of the two
possible treatment assignments T ∈ {0, 1}, it is of course possible to construct an unbiased estimate of
the average treatment effect E[Y (1) − Y (0)|G] for a sufficiently large group of individuals, where the
group G = g(X) is defined by covariates X. We proceed by creating such groups based on our CATE
estimates. We make use of cross-fitting to remove bias, as follows. We partition the data into folds,
and let k(i) be the fold that leaves out observation i. For each fold k, we estimate a mapping τ̂−k from
covariates x to the CATE using data that leaves out observations in fold k. We then divide the covariate
space into four groups based on the quartile of estimated treatment effects τ̂−k(x), yielding a mapping
gτ̂−k from x to quartile identifiers that represents which quartile τ̂−k(x). We then apply this mapping
to the observations in fold k, assigning units in the into four groups based only on the covariates of
those units. Finally, we estimate average treatment effects E[Yi(1)−Yi(0)|gτ̂−k(i)(Xi) = G] for each of
the four groups G by the average difference between treated and control outcomes within that group.
These estimates are unbiased estimates of the average treatment effect for the groups (recalling groups
are defined by the covariates), since the outcomes of the units in fold k were not used in any part of the
process of assigning units to groups. We finally average these over the folds. The resulting estimates
are model-free, unbiased estimates of average treatment effects in each group.

Our resulting estimates of treatment effects are noisy, and the heterogeneity across groups is only
moderate. Focusing on the model estimated with the later set of available information, Figure 2 plots
unbiased estimates of the group-wise average treatment effect across quartiles of estimated treatment
effects for the 2017 and 2018 cohort.

Both graphs document that treatment effects τ(x) vary across the distribution, although the forest-
based estimates τ̂(x) differ from unbiased estimates and even produce non-monotonic rankings. For
2017, the average treatment effect in the lowest quartile of estimated effects is significantly lower than
those of the rest of the distribution, at around 4 percentage points, relative to the average of the
remaining sample at around 8 percentage points. For 2018, the average outcome in the lower half of
estimated treatment effects is around 7 percentage points lower than the average above the median.
Effects for the set of covariates available earlier is noisier, especially for the 2018 data.
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(a) 2017 (b) 2018

Figure 2: Average treatment effects by quartiles of estimated treatment effects. The x-axis divides the
sample into quartiles of predicted cross-fitted treatment effects. The y-axis plots a simple difference-
in-averages (cyan) as well as an augmented inverse-propensity weighted (red) estimator of the average
treatment effect of the group, along with a 95% confidence interval.

We next inspect which variables vary the most along with treatment effects predicted by the random
forest (Figure 4). When we order variables according to how much they vary across quartiles of
estimated treatment effects, we find that variables related to enrollment are among those associated
most with heterogeneity estimated from information available right before the intervention.

Our analysis suggests that most of the heterogeneity identified by the generalized random forest from
these covariates does indeed come from some students dropping out and therefore being less responsive
to the nudge. Indeed, if we calculate average treatment effects across enrollment status, we find
that it partitions treatment effects as well as (2017) or even better than (2018) our treatment-effect
estimates (Figure 3). Once we estimate heterogeneous treatment effects only among those who are still
enrolled at the onset of reminders, we are unable to find sufficient evidence for additional heterogeneity
(Figure 4). Only in the 2017 data do we find suggestive evidence of a group of enrolled students
that responds less than other enrolled students. In the 2018 sample of enrolled students, we do
not find any significant heterogeneity, and estimated effects are close to the average effect across
quartiles of estimated treatment effects. This result suggests that there is not much, if any, systematic
heterogeneity in how enrolled students react to the nudge. For policy purposes, this means that in
2018 we could likely not have done better in terms of targeting than sending reminders to the enrolled
students.

We note that the results on enrollment as an important treatment-effect moderator are not mechanical.
Indeed, reminders affect filing of both students who are enrolled and who are not enrolled at the time
enrollment is measured for the spring semester. Since students may drop out and re-enroll, it remains
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(a) 2017 (b) 2018

Figure 3: Average treatment effects by enrollment status (top) and by whether predicted cross-fitted
treatment effects are below or above the quantile corresponding to the proportion of enrolled students
(bottom), using all data up to the start of the intervention. The y-axis plots a simple difference-in-
averages as well as two augmented inverse-propensity weighted (“AIPW”) estimators, with batch-wise
constant and with estimated propensity scores, of the average treatment effect within the group, along
with a 95% confidence interval.

effective to provide reminders for unenrolled students. Rather, we consider it an interesting finding
that there seems to be very little additional heterogeneity, making enrollment a powerful proxy for the
effectiveness of reminders already by itself.

4 Effect of Targeted Policies

Building upon the estimates τ̂(x) of heterogeneous treatment effects from the previous section, we now
ask how we can use such information to improve the targeting of reminders. While most heterogeneity
in conditional average treatment effects τ(x) can be predicted by enrollment once we know whether
a student has dropped out, we now ask whether we could have used predictions of heterogeneous
treatment effects to select students to send behaviorally-informed reminders before the beginning of
the semester, when enrollment information was not yet available. We focus on the 2017 cohort.

Rather than evaluating the quality of our predictions τ̂(x) in terms of raw prediction loss relative to
τ(x), Figure 5 quantifies which proportion of total gain from the reminders we could have realized
when targeting a given fraction of students.

Here, we leverage the insight that the outcome under alternative assignment policies can be esti-
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(a) 2017 (b) 2018

Figure 4: Average treatment effects by quartiles of estimated treatment effects among enrolled students.
The x-axis divides the sample into quartiles of cross-fitted estimated treatment effects. The y-axis
plots a simple difference-in-averages (cyan) as well as an augmented inverse-propensity weighted (red)
estimator of the average treatment effect within each quartile, along with a 95% confidence interval.

mated from existing trial data by exploiting randomized assignment, which permits the estimation of
E[Y (π(X))] = E[E[Y |T = 1, X] π(X) +E[Y |T = 1, X] (1− π(X))] for an assignment policy that maps
characteristics x to an assignment π(x) ∈ {0, 1} (e.g. Hitsch and Misra, 2018). Specifically, we consider
assignment policies

π̂causalt (x) = 1(τ̂(x) ≥ t)

that assigning all students to treatment whose estimated treatment effect is above some threshold t.
For each threshold, t, we can estimate (using four-fold cross-fitting) the average outcome U causal

t =
E[Y (π̂causalt (X))] we could have achieved using this policy. For every value of t, Figure 5 plots the
resulting estimate Û causal

t of U causal
t on the y-axis against the fraction of individuals in our sample with

τ̂(Xi) ≥ t, allowing us to evaluate and compare policies based on the total increase in FAFSA renewal
relative to the number of students who are sent reminders.3 We estimate that we could have increased
FAFSA renewal at the priority deadline from 36.5% to 41% (realizing 80% of the gain) by targeting
those 70% of students with the highest predicted effect. Future enrollment prediction, where we instead
predict future enrollment and assign those students with the highest probability of enrollment, would
have been comparatively successful, providing further evidence that heterogeneous treatment effects
here are related to enrollment.

3Such policy ROC curves (also called “uplift curve”, “profit curve”, or “cost curve”) have also been used to represent
benefits of targeting at varying costs e.g. by Rzepakowski and Jaroszewicz (2012); Zhao et al. (2013); Hitsch and Misra
(2018); Sun et al. (2021).

11



We compare targeting by causal treatment effects to a purely predictive targeting rule. Specifically, we
predict the probability f(x) = E[Y (0)|X = x] that a student would have been to file by the priority
deadline absent the behaviorally-informed reminders and give treatment first to those with the lowest
predicted probability. This targeting rule has intuitive appeal since those who are least likely to file are
those with the highest potential for the treatment to have a large effect. It can also be implemented
efficiently using any off-the-shelf machine-learning predictor that predicts filing by the deadline from
available variables in the absence of an experiment, since f(x) = E[Y |X = x, T = 0]. However, the
predictive policy

π̂predictiveb (x) = 1(f̂(x) ≤ b)

based on a random-forest prediction f̂(x) performs significantly worse than the policy based on the
causal estimation of treatment effects. Indeed, we estimate that the outcome E[Y (π̂predictivet (X))] of
the prediction-based approach is considerably worse than assigning people randomly.

Assigning those to treatment that are least likely to renew at baseline is just one of many prediction-
based assignment policies we could have considered. An alternative policy that sends nudges to those
students who are most likely to renew at baseline (the “Inverse Baseline” policy in Figure 5) has
performance that is comparable or even exceeds that of the causal policy, showing that nudges may be
most effective for those who are already most likely to respond at baseline. Another natural baseline –
targeting those with intermediate baseline probabilities of filing for financial aid, denoted by “Middle
Baseline” in Figure 5 – seems not to do much better than random targeting in this case. While many
of these approaches may have been plausible ex-ante, and one of the predictive policies performs well
in this case, only through the ex-post evaluation from the experiment did we learn which one it was.
The causal approach has the advantage that it directly estimates a policy that we can expect to work
well based solely on the empirical relationships of covariates to treatment effects, rendering guessing a
policy that may work well (or testing a large number of them explicitly) unnecessary.

5 Conclusion

The failure of a purely predictive policy relative to a method that combines causal inference and
machine learning provides an example of the value of integrating careful experimentation, causal in-
ference, and predictive modeling. By itself, predictive machine learning could have led to a bad policy,
but a purpose-built algorithm run on a randomized experiment provides a coherent analysis that can
inform future policy development. Our analysis also points to the challenges of evaluating existing
experiments with machine learning. While sample and effect sizes seem large for estimating average
treatment effects, an intervention designed to work well on average in an experiment powered for
estimating averages makes the precise estimation of heterogeneous treatment effects statistically and
technically challenging. Future experiments could also rely on an integration of targeting into their
design.

Our results come with important caveats that limit statistical power, generalizability, and policy appli-
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Figure 5: Total estimated FAFSA renewal rate (y-axis) by targeting a given fraction (x-axis) of
students according to different cross-fitted predictions in the 2017 data with early covariates, including a
prediction of outcomes absent treatment (“Baseline”), a prediction of future enrollment (“Enrollment”),
and a prediction of treatment effects (“CATE”). Shown are augmented inverse-propensity weighted
estimates with 95% confidence intervals that represent the pointwise uncertainty of the difference in
renewal rate relative to the random policy that assigns the same fraction to treatment.

13



cability. Since this experiment was not designed for heterogeneous-treatment effect analysis, treatment
arms were chosen to work well on average, rather than for specific subgroups. Overall treatment ef-
fects are moderate since they come from relatively modest nudges, and the experiment was powered to
detect average effects rather than effects on many subgroups. Finally, sending behaviorally informed
reminders is cheap and does not appear to have any negative treatment effects in the experiment, so
while these results can help target reminders to those for whom they will work best, the main effect
remains limited to avoiding inundating students with reminder texts and emails for who the effect
would be small.

We believe that overcoming these shortcomings in future studies requires designing experiments ex
ante to estimate heterogeneous treatment effects in the first place. This includes designing individual
treatment arms that are likely to affect different people differently so that differentiated treatments can
be matched to appropriate individuals and situations. It also involves updating power analyses to the
higher sample size demands for estimating heterogeneous treatment effects, rather than average effects
alone. Finally, policies based on heterogeneous treatment effects will be particularly important when
treatment delivery is costly, or we need to make choices between treatments for which none dominates
others across individuals.
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A Additional Tables and Figures

Control Treatment p-value N
N = 12, 658 N = 12, 480

COLLEGE_IN_INTERVENTION_SPR: 0.69 25138
0 3953 (31.229%) 3928 (31.474%)
1 8705 (68.771%) 8552 (68.526%)

AGE 23.680 (6.635) 23.556 (6.518) 0.19 19153
GENDER: 0.51 25138

Men 5396 (42.629%) 5372 (43.045%)
Women 7262 (57.371%) 7108 (56.955%)

ETHNICITY: 0.89 25138
American Indian or Native Alaskan 39 (0.308%) 33 (0.264%)
Asian or Pacific Islander 1072 (8.469%) 1091 (8.742%)
Black, Non-Hispanic 4107 (32.446%) 4067 (32.588%)
Hispanic, Other 6558 (51.809%) 6422 (51.458%)
White, Non-Hispanic 882 (6.968%) 867 (6.947%)

TRANSFER: 0.32 25138
0 9104 (71.923%) 8874 (71.106%)
1 591 (4.669%) 584 (4.679%)
’Missing’ 2963 (23.408%) 3022 (24.215%)

FT_PT_STATUS: 0.39 25138
FULL-TIME 6610 (52.220%) 6415 (51.402%)
PART-TIME 2441 (19.284%) 2473 (19.816%)
’Missing’ 3607 (28.496%) 3592 (28.782%)

GPA_CUMU_BF 2.475 (0.952) 2.472 (0.947) 0.84 14633
CRD_CUMU_ATMPT_BF 18.706 (16.565) 18.785 (16.524) 0.75 17939
CRD_CUMU_EARN_BF 17.475 (15.661) 17.387 (15.505) 0.70 17939

Table 2: Balance table for the 2017 FAFSA experiment.
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Control Treatment 1 Treatment 2 p-value N
N = 3226 N = 13698 N = 13610

AGE 23.412 (6.566) 23.625 (6.764) 23.425 (6.601) 0.07 23164
GENDER: 0.40 30534

Men 1464 (45.381%) 6062 (44.255%) 5998 (44.071%)
Women 1762 (54.619%) 7636 (55.745%) 7612 (55.929%)

ETHNICITY: 0.83 30534
American Indian or Native Alaskan 13 (0.403%) 69 (0.504%) 68 (0.500%)
Asian or Pacific Islander 503 (15.592%) 2065 (15.075%) 2000 (14.695%)
Black, Non-Hispanic 971 (30.099%) 4112 (30.019%) 4019 (29.530%)
Hispanic, Other 1419 (43.986%) 6092 (44.474%) 6147 (45.165%)
White, Non-Hispanic 320 (9.919%) 1360 (9.928%) 1376 (10.110%)

TRANSFER: 0.59 30534
0 2319 (71.885%) 9809 (71.609%) 9776 (71.830%)
1 132 (4.092%) 593 (4.329%) 535 (3.931%)
’Missing’ 775 (24.024%) 3296 (24.062%) 3299 (24.240%)

FT_PT_STATUS: 0.67 30534
FULL-TIME 1706 (52.883%) 7350 (53.657%) 7342 (53.946%)
PART-TIME 643 (19.932%) 2692 (19.653%) 2601 (19.111%)
’Missing’ 877 (27.185%) 3656 (26.690%) 3667 (26.943%)

GPA_CUMU_BF 2.538 (0.934) 2.508 (0.942) 2.500 (0.948) 0.28 19020
CRD_CUMU_ATMPT_BF 21.635 (17.409) 21.285 (16.829) 21.275 (16.995) 0.63 22334
CRD_CUMU_EARN_BF 19.330 (15.676) 19.001 (15.169) 18.968 (15.317) 0.58 22334

(i) Early schools

Control Treatment 1 Treatment 2 p-value N
N = 2497 N = 3802 N = 3699

AGE 23.742 (6.448) 23.906 (6.724) 24.076 (6.803) 0.23 7866
GENDER: 0.50 9998

Men 1200 (48.058%) 1770 (46.554%) 1745 (47.175%)
Women 1297 (51.942%) 2032 (53.446%) 1954 (52.825%)

ETHNICITY: 0.54 9998
American Indian or Native Alaskan 9 (0.360%) 10 (0.263%) 6 (0.162%)
Asian or Pacific Islander 195 (7.809%) 313 (8.233%) 278 (7.516%)
Black, Non-Hispanic 814 (32.599%) 1241 (32.641%) 1219 (32.955%)
Hispanic, Other 1100 (44.053%) 1717 (45.160%) 1646 (44.499%)
White, Non-Hispanic 379 (15.178%) 521 (13.703%) 550 (14.869%)

TRANSFER: 0.36 9998
0 1799 (72.046%) 2753 (72.409%) 2692 (72.776%)
1 151 (6.047%) 258 (6.786%) 213 (5.758%)
’Missing’ 547 (21.906%) 791 (20.805%) 794 (21.465%)

FT_PT_STATUS: 0.18 9998
FULL-TIME 1309 (52.423%) 2109 (55.471%) 2019 (54.582%)
PART-TIME 497 (19.904%) 689 (18.122%) 682 (18.437%)
’Missing’ 691 (27.673%) 1004 (26.407%) 998 (26.980%)

GPA_CUMU_BF 2.408 (0.935) 2.459 (0.935) 2.494 (0.936) 0.02 6223
CRD_CUMU_ATMPT_BF 22.097 (17.048) 22.089 (17.149) 22.415 (17.162) 0.74 7305
CRD_CUMU_EARN_BF 19.888 (15.367) 19.900 (15.465) 20.184 (15.339) 0.74 7305

(ii) Late schools

Table 3: Balance tables for the 2018 FAFSA experiment.
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Method ATE SE
OLS (IPW) 0.0641 0.0061
AIPW (Constant propensity) 0.0687 0.0053
AIPW (Orthogonalization) 0.0686 0.0053

(a) 2017

School timeline Method ATE SE
All OLS (IPW) 0.1209 0.0074

AIPW (Constant Propensity) 0.1182 0.0065
AIPW (Orthogonalization) 0.1182 0.0065

Early OLS (IPW) 0.1213 0.0091
AIPW (Constant propensity) 0.1198 0.0079
AIPW (Orthogonalization) 0.1200 0.0080

Late OLS (IPW) 0.1201 0.0109
AIPW (Constant propensity) 0.1134 0.0099
AIPW (Orthogonalization) 0.1132 0.0100

(b) 2018

Table 4: Overall average treatment effects, estimated by simple (propensity-adjusted) differences in
averages (“OLS”) as well as by an Augmented Inverse Propensity Score estimator (“AIPW”) based on
random forests with constant and flexible propensity score, respectively.
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Figure 6: Variables in the 2018 FAFSA study ordered buy how much they vary across estimated
quartiles of treatment effects (late covariates).
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B Evaluation of Assignment Policies

In the main paper, we compare the precision of different treatment-effect estimates in terms of the
average outcomes that can be achieved when we use them for targeting. In this section, we discuss
estimation and inference on these average outcomes, which we use to obtain Figure 5.

Consider treatment assignment policies π that map characteristics X = x to probabilities π(x) ∈ [0, 1]
of being treated. (This may include policies derived from treatment-effect estimates and random
assignment, in which case π(x) ≡ q with q the probability of assignment.) When treatment is assigned
completely randomly (or randomly with known propensity score that only depends on X) in the
existing data and X is observed, then the average outcome E[π(X)Y (1) + (1 − π(X))Y (0)] under
this policy, the total lift E[π(X)(Y (1) − Y (0))] relative to baseline, and the average treatment effect
E[π(X)(Y (1)−Y (0))]

E[π(X)] of those assigned to treatment are all identified, since E[Y (1)|X] = E[Y |X,T =
1],E[Y (0)|X] = E[Y |X,T = 0] are.

Focusing on the case of average outcomes as in Figure 5, we write U(π) = E[π(X)Y (1)+(1−π(X))Y (0)
for the expected outcome under this policy, which is identified by U(π) = E[π(X)Y |T = 1] + E[(1 −
π(X))Y |T = 0] and could be estimated by its sample analogue

Û(π) =
∑n
i=1 Tiπ(Xi)Yi∑n

i=1 Ti
−
∑n
i=1(1− Ti)(1− π(Xi))Yi∑n

i=1(1− Ti)
(1)

= 1
n

n∑
i=1

Ti
p̂
π(Xi)Yi −

1− Ti
1− p̂ (1− π(Xi))Yi with p̂ =

∑n
i=1 Ti
n

(2)

similarly to Hitsch and Misra (2018), who consider the case of a known propensity score and non-
stochastic assignment.

In our implementation for Figure 5, we are specifically interested in making inference on differences
U(π)− U(π̄q) in outcomes of a policy π that assigns students to treatment based on some rule (such
as by ranking by estimated treatment effects) relative to the baseline policy π̄q(x) ≡ q that assigns a
random fraction q to treatment. We note that for any two policies π and π̄, we have U(π) − U(π̄) =
E[(π(X)− π̄(X))Y (1)−Y (0)] = E[(π(X)− π̄(X))τ(X)], and for this specific baseline policy π̄q, we find
U(π̄q) = E[Y (0)]+qE[Y (1)−Y (0)] = E[Y |T = 0]+qE[τ(X)].4 Since E[Y |T = 0] is readily estimated,
we therefore now focus on efficient estimation and valid inference on weighted average treatment effects
τw = E[w(X)τ(X)], where weights can be negative. Once we have established estimation and inference
for τw, we can estimate all quantities of interest via

U(π)− U(π̄q) = τπ−π̄q
, U(π̄q) = E[Y |T = 0] + τ1, U(π) = U(π) + (U(π)− U(π̄q)).

To improve efficiency and robustness of our estimate, as well as to ensure valid inference later on,
we consider an augmented inverse propensity weighted (AIPW) estimator of τw = E[w(X)τ(X)].
Specifically, we assume that we have a consistent estimate f̂(x) of E[Y |X = x], a consistent estimate

4When propensity scores are non-constant, estimating E[Y (0)] will require additional care, and can be achieved by
propensity-score weighting.
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τ̂(x) of τ(x), and a consistent propensity score estimate p̂(x) of E[T |X = x] available. The propensity
score may be assumed to be constant when units are randomized unconditionally, in which case we
may want to set p̂(x) ≡

∑n

i=1
Ti

n as above. We assume that f̂ , τ̂ , p̂ are all fitted on separate data or
using k-fold cross-fitting. Writing f̂1(x) = f̂(x) + (1− p̂(x))τ̂(x), f̂0(x) = f̂(x)− p̂(x)τ̂(x), the AIPW
estimator

τ̂AIPWw = 1
n

n∑
i=1

w(Xi)
(
τ̂(Xi) + Ti − p̂(Xi)

p̂(Xi)(1− p̂(Xi))
(Yi − f̂Ti

(Xi))
)

︸ ︷︷ ︸
=τ̂AIPW(Yi,Ti,Xi)

This estimator is
√
n consistent and asymptotically Normal under standard regularity conditions, and

it is exactly unbiased when the propensity score is known and remains consistent even when treatment-
effect and outcome estimates are not. We can consistently estimate its asymptotic variance by

σ̂2
w = 1

n

(
w(X) τ̂AIPW(Yi, Ti, Xi)− τ̂AIPWw

)2
to obtain standard error estimates σ̂w√

n
and a corresponding 95 % confidence interval τ̂AIPWw ±1.96 · σ̂w√

n
.

Applying this estimator to the estimation for Figure 5, we can estimate

ÛAIPW(π̄q) =
∑n
i=1(1− Ti)Yi∑n
i=1(1− Ti)

+ q
1
n

n∑
i=1

τ̂AIPW(Yi, Ti, Xi)

ÛAIPW(π) = ÛAIPW(π̄q) + 1
n

n∑
i=1

(π(Xi)− q) τ̂AIPW(Yi, Ti, Xi)︸ ︷︷ ︸
=∆̂(π)

,

ŜE
(
ÛAIPW(π)− ÛAIPW(π̄q)

)
=

√√√√ 1
n2

n∑
i=1

(
(π(Xi)− q) τ̂AIPW(Yi, Ti, Xi)− ∆̂(π)

)2
.

We note that, in particular, the estimation outcome of the random policy does not include any addi-
tional randomization, which would only add noise to the estimation. Further, we obtain the estimator
in Equation 1 of U(π) when we set p̂(x) ≡

∑n

i=1
Ti

n , τ̂(x) ≡ 0, f̂(x) ≡ 0, which is generally inefficient.

So far, we have considered fixed policies π. However, in our application, policies are themselves
estimated, such as the policy

π̂t̂(x) = 1(τ̂(x) ≥ t̂)

where treatment effects τ̂(x) and the cutoff t̂ chosen to achieve a given proportion q in treatment are
all noisy. We use cross-fitting to avoid biases from estimation in this case. Specifically, we estimate the
quantities of interest separately on each fold, using rankings estimated based on the other folds only,
and then average aggregate across all folds. Under regularity conditions is the covariance between
estimates from different folds of a lower order than the variance we estimate, allowing us to combine
estimates and variance estimates across folds to obtain valid inference.
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