Raw Data Res

Identification 0000000 Heterogeneity

External Validity

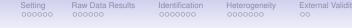
Conclusions o

Crowdsourcing Peer Information to Change Spending Behavior

Francesco D'Acunto Georgetown University

Alberto G Rossi Georgetown University

Michael Weber University of Chicago & NBER

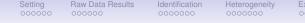


Research Agenda on Robo-Advising

Common Perception:

Robo-advising = automated advice for portfolio allocation

III PERSONAL CAPITAL

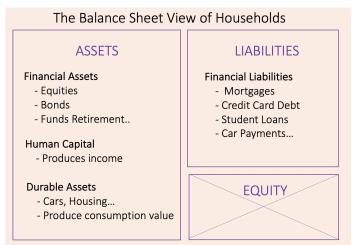


External Validity

Conclusions o

Research Agenda on Robo-Advising

BUT households' decisions are more complex!
 Robo-Advising: automated advice for ANY household choice



(D'Acunto and Rossi, 2021)

Research Agenda on Robo-Advising

Robo-advising for Investment Decisions

- "Robo-advising," D'Acunto & Rossi
- "The Promises and Pitfalls of Robo-advising," D'Acunto, Prabhala & Rossi
- "Who Benefits from Robo-advising? Evidence from Machine Learning" Rossi & Utkus
- "The Needs and Wants in Financial Advice: Human vs Robo-Advising," Rossi&Utkus
- S "Algorithmic Aversion: Theory and Evidence from Robo-advice," Ramadorai et. al

Robo-advising/FinTech for Consumption, Saving, Debt & Lending

- "New Frontiers of Robo-Advising: Consumption, Saving, Debt Management, and Taxes," D'Acunto and Rossi
- *"Crowdsourcing Peer Information to Change Spending,"* D'Acunto, Rossi & Weber
- "Goal Setting and Saving in the FinTech Era" Gargano & Rossi
- "How Costly Are Cultural Biases? Evidence from FinTech" D'Acunto, Ghosh & Rossi
- "Improving Households' Debt Management with Robo-advising" D'Acunto, et. al

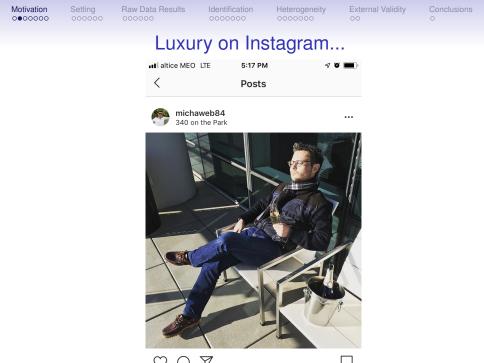
Low savings limit wealth accumulation for retirement

Households have little information about optimal savings rate

Likely to acquire information from the spending of others

Potential role for visibility bias (Han, Hirshleifer, Walden, 2018)

- People make inference based on others' spending choices
- BUT, mostly conspicuous part visible
- Might overestimate the overall spending of others
- Especially in times of social media



Raw Data Res

Identification

Heterogeneity

External Validity

Conclusions o

Sad and cheap everyday dinner...

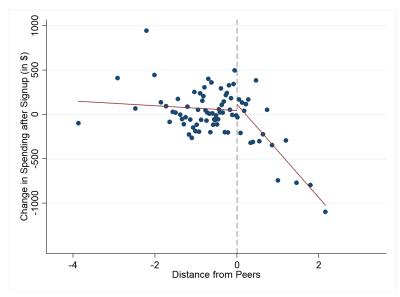
- Biased inference can lead to severe over-consumption
- How to correct this biased inference, and choices?
- Provide info on the overall spending of others

 \rightarrow VERY DIFFICULT to implement with traditional tools

This Paper

- Income aggregator application (app) called Status
- Robo-advisor for consumption. Provides users with:
 - information on spending similar individuals (peers)
 - information crowdsourced from representative US data
- Do users react to this information? If yes, how?
- Allows us to study peer effects in a setting we can rule out
 - common shocks
 - socialization

Spending Reaction to Information about Peers



Heterogeneity

xternal Validity

Conclusions o

Preview of Our Main Findings

- Users who are told they spend
 - more than peers reduce spending
 - less than peers increase spending
- Asymmetry: cuts are three times larger than increases
- Oistance from peers affects reaction monotonically
- Stronger reaction if signal more informative
- Lower-income users react more
- External validity using RCT on non-selected population

The STATUS APP (INPUTS)

At Signup, users provide Status with:

- Annual Income (can be verified from accounts ex post)
- Age
- Homeownership status
- Location of residence
- Location type—Urban or Rural
- $\bullet\,$ Social Security Number \rightarrow STATUS obtains credit report

Users link their:

- Debit and credit account(s)
- Retirement and investment account(s)

000000

Setting

The STATUS APP (PEER GROUPS)

You	P	Your Peers 9.9K people
Age		Age Range
42		40 - 49
Income		Income Range
\$14OK		\$100K – \$150K
Location		Location
New York, NY		New York, NY
Location Type		Location Type
Urban		All
Credit Score		Credit Score Range
769		720 – 779
Housing Type		Housing Type
Pay Rent		Pay Rent

The STATUS APP

Using the information provided, the STATUS APP:

- Constructs a peer group for each client
- Peers matched on 5 characteristics & w > 5,000 individuals
- STATUS purchases spending data for random US sample
- Compares the client's consumption to that of the peer group
- Information is easy-to-understand and salient

Setting

000000

The STATUS APP (PEER SPENDING)

tivation Setting

Raw Data Resi

Identification

Heterogeneity

External Validity

Conclusions o

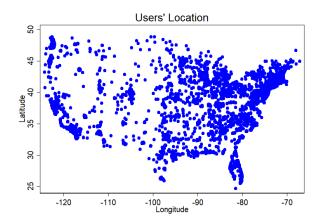
Status Users Characteristics

	Main sample		
	Observations	<u>Mean</u>	<u>St. Dev.</u>
Age	20,679	32.01	7.80
Credit Score	19,051	736.20	74.34
Home Ownership	20,679	0.39	0.49
Annual Income (\$)	20,679	92,633	62,838
Distance Peers	20,679	-0.53	0.97
Monthly Spending Before (30 Days, \$)	20,679	4,963	4,007
Monthly Spending Before (60 Days, \$)	20,679	4,886	4,040
Monthly Spending Before (90 Days, \$)	20,679	4,671	3,894

Setting

000000

Status Users Location



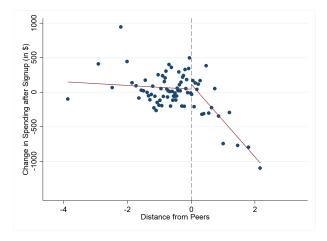
- Study change in spending behavior around sign up
- Use three months prior and after signup (similar for two, one)
- Split sample into individuals spending above and below peers
- Seasonally-adjusted Δ spending using time-fixed effects

 Vation
 Setting
 Raw Data Results
 Identification
 Heterogeneity
 External Validity
 Conclusions

 0000
 000000
 000000
 000000
 00
 0
 0

Spending Reaction to Information about Peers-II

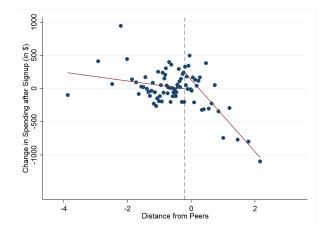
Exogenous Threshold at "0"



 Setting
 Raw Data Results
 Identification
 Heterogeneity
 External Validity
 Conclusion

 Spending Reaction to Information about Peers-III

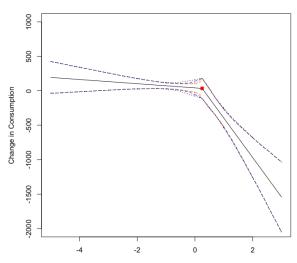
• Endogenous Threshold Regressions (Hansen, 2000)



Spending Reaction to Information about Peers-IV

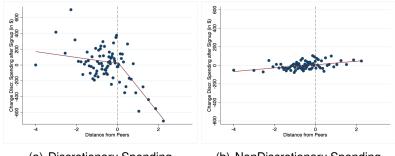
Kink Regression Results (Hansen, 2015)

Raw Data Results



Consumption wrt to peers

Spending Reaction to Information about Peers-V

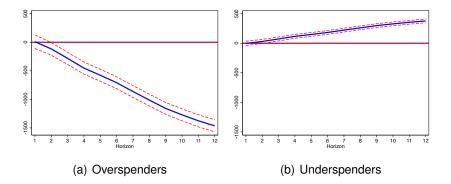


(a) Discretionary Spending

(b) NonDiscretionary Spending

Dynamic Effect of Peer Spending After Sign-up

Tracking Spending up to 12 months post signup



Multivariate Results

Identification

- Raw results: don't account for differences in spending levels across users
- Dep. variable: normalized ratio of 90 days post spending to 90 days pre
- Estimate (in Columns 3-4):

 $\frac{\textit{Spending}_{i,\textit{post}}}{\textit{Spending}_{i,\textit{pre}}} = \alpha + \gamma \textit{ Distance Peers}_i + \delta \textit{ x}_i + \epsilon_i,$

	Above	Below	Distance Above	Distance Below
Average Change	-0.233*** (-42.00)	0.074*** (8.34)		
Distance Peers			-0.103*** (-11.31)	-0.086*** (-7.03)
Observations	5,012	15,667	5,012	15,667

Results are robust to adding additional controls

Identification

• Are we capturing a mean reversion effect for over-spenders?

- Directly control for pre-signup spending
- Use spending 2 or 3 months before signup for Δ peer spending

	30 Days before Signup		60 Days before Signup		90 Days before Signup	
Distance Peers	(1) -0.103*** (-11.31)	(2) -0.039*** (-3.54)	(1) -0.110**** (-13.83)	(2) -0.083*** (-8.61)	(1) -0.099**** (-11.75)	(2) -0.075*** (-7.38)
Spend Before		-0.096*** (-13.11)		-0.062*** (-8.91)		-0.058*** (-8.25)
Other controls		\checkmark		\checkmark		\checkmark
Observations	5,012	4,179	4,791	3,970	4,473	3,697

 $\frac{\textit{Spending}_{i,\textit{post}}}{\textit{Spending}_{i,\textit{pre}}} = \alpha + \gamma \textit{ Distance Peers}_i + \zeta \textit{ Spending}_{i,\textit{pre}} + \delta \textit{ x}_i + \epsilon_i,$

tion Heter

erogeneity

xternal Validity

Conclusions o

Identification Strategy

Identification Concerns:

- Individuals who sign-up for STATUS may know they are:
 - Over-spending
 - Under-spending
 - \rightarrow They might have changed spending anyway

Identification Strategy:

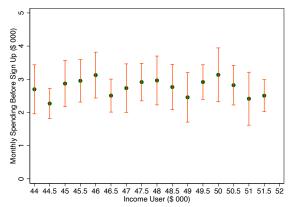
- Exploit cutoffs to assign users to peer groups
- Most important are Income Buckets: \$35K, \$50K, \$75K, \$100K, and \$150K
- Users around cutoffs, very similar income & spending profiles
- Above cutoff -> peer group with higher spending
- Below cutoff→peer group with lower spending

 Identification
 Heterogeneity
 External Validity
 Conclusions

 000000
 000000
 000000
 000000
 000000
 000000

Assessing Identifying Assumptions: Spending Before

No detectable differences in pre-spending around all thresholds



Example: Income Threshold \$50,000

Assessing Identifying Assumptions: Other variables

	Home ownership	log of Credit Score	log of Age	log of Asset Balance	log of Debt Balance		
		Panel A: Income Threshold: \$35,000					
Above Dummy	0.031 (1.06)	-0.009 (-0.95)	0.018 (1.02)	-0.160 (-0.85)	0.324** (2.10)		
Observations	` 896´	834	896	`675 <i>´</i>	837		
		Panel B:	ncome Threshol	d: \$50,000			
Above Dummy	0.038 (1.63)	-0.001 (-0.09)	0.014 (1.31)	0.021 (0.17)	0.009 (0.08)		
Observations	1,516	1,410	1,516	1,227	1,415		
		Panel C:	ncome Threshol	d: \$75,000			
Above Dummy	0.013	0.002	0.012	0.017	0.027		
Observations	(0.49) 1,546	(0.25) 1,435	(0.14) 1,546	(-0.03) 1,278	(0.23) 1,457		
	Panel D: Income Threshold: \$100,000						
Above Dummy	0.004	0.019	0.024**	0.199	-0.163		
Observations	(0.14) 1,128	(1.24) 1,047	(2.09) 1,128	(1.62) 954	(-1.21) 1,065		
		Panel E: Income Threshold: \$150,000					
Above Dummy	-0.015 (-0.35)	0.002 (0.24)	-0.000 (-0.00)	-0.074 (-0.44)	-0.322 (-1.54)		
Observations	543	5 10	543	482	516		

Identification Strategy

• Keep only clients close the threshold: -\$6K to +\$2K

Identification

- Use the random assignment to instrument for peer spending
- Estimate the following 2SLS specification

Peer Spending_i = $\alpha + \gamma$ Dummy Above_i + ζ Spending Before_i + ϵ_i , (First Stage)

 $\frac{Spending_{i,post}}{Spending_{i,pre}} = \alpha + \beta \text{ Peer Spending}_i + \zeta \text{ Spending Before}_i + \epsilon_i, \text{ (Second Stage)}$

• Expect: $\hat{\beta} > 0$, increase if above cutoff seeing higher spending

Motivation	Setting 000000	Raw Data Results	Identification ○○○○○●	Heterogeneity	External Validity	Conclusions o

Two-stage Least Squares

			Placebo IV	
	First Stage	Second Stage	First Stage	Second Stage
Above Dummy	0.743*** (24.62)		0.078 (0.795)	
Peer Spending	(24.02)	0.111*** (3.08)	(0.733)	0.942 (0.432)
Spending Before	0.344*** (23.33)	-0.305*** (-15.63)	0.120*** (3.46)	-0.566*** (-2.02)
First stage F-stat	606.1			
Observations	5,629	5,629	678	678

- Thresholds: \$35K, \$50K, \$65K, \$75K, \$100K, and \$150K
- Placebo Thresholds: \$45K, \$60K, \$90K, \$110K, and \$140K

Reaction by Signal Informativeness

Users react more to more informative signals, i.e., when:

- peer groups comprise more similar people
- the number of people in the peer group is larger
- peer groups income width is smaller
- users are unlikely to have peer info before adopting the App

Reactions by Income Levels

- Low-income households ex-ante less access to information
- But a larger part of their income is spent on discretionaries
- Ex-ante not clear which direction, if any, heterogeneity goes

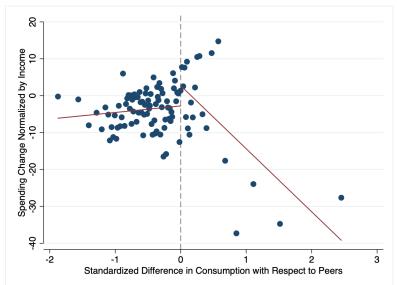
Raw Data Re

Identification 0000000 Heterogeneity

External Validity

Conclusions o

Reactions by Income Levels (INCOME GROUP 1)



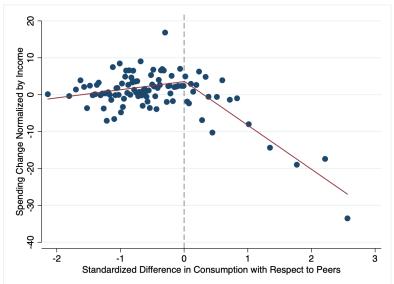
Raw Data Re

Identification 0000000 Heterogeneity

External Validity

Conclusions o

Reactions by Income Levels (INCOME GROUP 2)



Raw Data Re

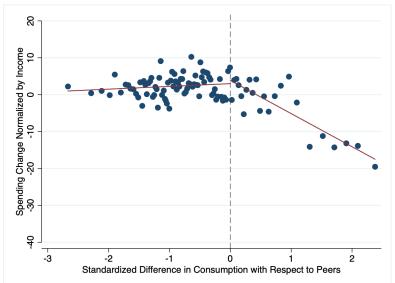
Identification

Heterogeneity

External Validity

Conclusions o

Reactions by Income Levels (INCOME GROUP 3)



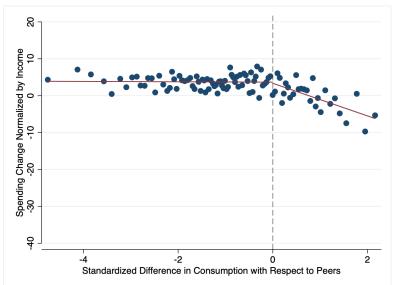
Raw Data Re

Identification 0000000 Heterogeneity

External Validity

Conclusions o

Reactions by Income Levels (INCOME GROUP 4)



Robustness

Results robust to (many!!) checks:

- Limiting the sample to users
 - with more than 2 accounts linked
 - under 35 years of age
 - with income below \$200K
 - other filters based on spending/login activity
- Showing users react to peer info and not other information
- Alternative regression specifications
- Alternative statistical inference
- Alternative bandwidths for IV strategy

Conclusions o

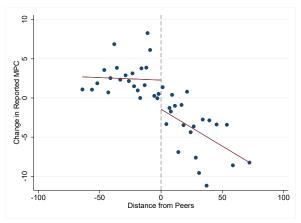
The Problem of External Validity

- All the results so far are within a specific population...
- ... those who decide to sign up for Status
 - They might care more than others about own financials
 - They might care more than others about peers
- Are results also externally valid?
 - If we did the same intervention on the whole population, would people react in the same way?

ation Setting Raw Data Results Identification Heterogeneity External Validity Conclus 0000 000000 000000 0000000 0● 0

External Validity? Randomized Control Trial

Replicate results on a representative US population, RCT



- Overconsumers cut, underconsumers increase MPC
- Asymmetric response
- Result robust conditioning on demos unobserved on Status

Users who spend

- more than peers reduce spending significantly
- less than peers keep constant or increase their spending
- ❷ More informative signal→stronger reaction
- Oaveat: reacting is likely not optimal!