

Missing Financial Data

Svetlana Bryzgalova Sven Lerner Martin Lettau Markus Pelger

Comments by Guofu Zhou

AI & BIG DATA IN FINANCE RESEARCH FORUM

ABFR Webinar, April 28, 2022

Is there really a problem?

Problem of Missing Values: A

(a) Number of Stocks

Problem of Missing Values: B

(e) Missing Percentage

Why Is It Important ?

- Thousands of Studies reply on firm characteristics
 - Fama and French 3-factor models, ...
 - Hundreds of anomalies
 - Empirical corporate; Accounting
- Potential issues: under- or over-estimate
- What about machine learning?
 - Panel approach: selection bias
 - Exception: Han, et al, 2022, "Expected Stock Returns ... E-LASSO ..."
 - univariate XS: replacing missing forecasts by others; competitive to NN.
 - Literature correction: Rapach, Strauss and Zhou (2013, JF) is perhaps <u>the first</u> <u>academic study</u> (published in a top finance journal) that applies LASSO, Enet in finance.

Pathbreaking !

- a generic approach dealing with missing data
- Another paper, Freyberger, et al, 2021, "Missing Data in asset pricing"
- Both offer unique insights

How to solve the problem?

The Idea

At time t, Let $C_{i,l}^t$ be firm i's characteristic l. Assume a factor model for the $N_t \times L$ matrix:

$$C_{i,l}^{t} = F_i^{t} \Lambda_l^{t\top} + e_{i,l}^{t}$$

PCA with all data:

$$ilde{\Sigma}_t^{XS} = rac{1}{L} \sum_{l=1}^L C_l^t C_l^{t op}, \quad N_t imes N_t$$

PCA with missing:

$$\hat{\Sigma}_{t}^{XS} = \frac{1}{|\mathcal{Q}_{i,j}^{t}|} \sum_{l \in \mathcal{Q}_{i,j}^{t}} C_{l}^{t} C_{l}^{t\top},$$

summing over observed data.

Major Results: 1

Table 3: Imputation Error for Different Imputation Methods

	In-Sample			OOS MAR			OOS Block		
Method	all	quarterly	monthly	all	quarterly	monthly	all	quarterly	monthly
global BF-XS	0.11	0.10	0.13	0.15	0.15	0.14	0.17	0.16	0.19
global F-XS	0.10	0.07	0.14	0.16	0.17	0.16	0.18	0.17	0.20
global B-XS	0.15	0.15	0.14	0.16	0.16	0.15	0.19	0.18	0.20
global XS	0.19	0.18	0.21	0.23	0.22	0.24	0.22	0.21	0.24
global B	0.16	0.17	0.15	0.17	0.17	0.15	0.21	0.20	0.22
local B-XS	0.15	0.16	0.14	0.16	0.17	0.15	0.19	0.19	0.20
local XS	0.21	0.20	0.22	0.23	0.22	0.24	0.23	0.22	0.24
prev	0.18	0.18	0.18	0.19	0.19	0.19	0.23	0.21	0.25
local B	0.16	0.17	0.15	0.17	0.17	0.15	0.21	0.20	0.22
XS-median	0.29	0.29	0.29	0.29	0.29	0.29	0.28	0.28	0.29
ind-median	0.29	0.29	0.29	0.29	0.29	0.29	0.28	0.28	0.29

Major Results: 2

Figure 15: Univariate Sorts With and Without Missing Values

Book-to-Mkt: sequentially to have more characteristics available.

Model Assumptions?

- Doing PCA on characteristics
 - more discussions on the types of missing?
 - missing at random
 - missing completely at random
 - simple:
 - ☞ given firm, it can miss 50% of the data?
 - Given characteristic, 75% of firm should not miss?
- The impact of different missing
 - Errors in identifying K?
 - Errors in estimating the eigenvalues/vectors?

Interpretation of PCs?

Given, say, 10 PCs:
 What are the economic interpretations ?
 data-driven grouping

Source: Jensen, Kelly, and Pedersen (2021, Is There a Replication Crisis in Finance?).

Interpretation of PCs?

- Given, say, 10 PCs:
 - What are the economic interpretation?
 - data-driven grouping
 - Which one is the most important? The least?
- If hard to explain, sparse PCA?
 - Pelger and Xiong (2021)
 - Rapach and Zhou (2021)
 - Get interpretable macro factors
 - Each PC is a combination of a few highly related macros
 - The factors are competitive to Fama-French factors!

s-PCA

PCA on:

$$\hat{\Sigma}_t^{XS} = \frac{1}{|\mathcal{Q}_{i,j}^t|} \sum_{l \in \mathcal{Q}_{i,j}^t} C_l^t C_l^{t\top},$$

Q: 1st PC about <u>trading friction</u> characteristics?

Source: Witten, D. M., R. Tibshirani, and T. Hastie (2009), A Penalized Matrix Decomposition, with Applications to Sparse Principal Components and Canonical Correlation Analysis. Biostatistics 10, 515–534.

WTH exploit the biconvexity to develop an efficient iterative algorithm.

Asset Pricing Implications

- Given K characteristic factors,
 - do they contain all the info of the characteristic to price all stocks?
 - only K categories of anomalies?
 - is the largest risk of characteristics carry the most risk premium?
 - which imputation method does the best in explaining the expected returns?
 - the Sharpe ratio?

Timely Forecasts?

- In cross-section forecasting, one often lags the characteristics <u>a few months</u>.
- No longer necessary!
 - If missing only a small amount, why "throw out the baby with the bath water"?
 - more timely info should be more valuable.
 - If in doubt, impute them. How will this affect the results?

A Paper to cite ?

- Liu, Tang and Zhou (2022, JFE, forth)
 - "Recovering the FOMC Risk Premium"
- Anything in common ?
 - missing data
 - options with expiration right after the FOMC
 - early years unavailable options
 - matrix completion via implied volatility surface
- Why cite ?
 - missing data problem too in option pricing
 - an alternative solution to a different problem
 - that paper does cite this one (in the last minute; good to inform readers on general approaches dealing with missing data).

- Thought provoking paper !
- Impressive results !
- Wide applications !
 - Bonds, FXs, mutual funds, etc.
 - Corporate, Accounting