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Shifts Against Labor

Labor share, BLS data for 1987-2016
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Declining labor share in the US; similar in Europe and the emerging world.

Capital deepening? Markups? Monopsony? The march forward of technology?

| will argue: much more connected to the changing task content of production — in
particular driven by excessive automation.

Al the next act in the suite of automation technologies—though no technological
necessity that it should be.



Some Consequences: Wages
> Labor market trends over the last several decades look nothing like a tide lifting all boats.
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Rise in Inequality Is Not Just a US Phenomenon

Figure 1: Change in Gini coefficient, 1985 to 2013
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1985 data refer to 1985 or closest available year. 2013 data refer to 2013 or nearest available year. The Gini
coefficient measures how equally income is distributed across a population, from O (perfectly equal) to 1 (all
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Automation is Not Just a US Phenomenon
> Similar polarization of employment— but not of wages, indicating an important role for

labor market institutions.

Change in Employment Shares by Occupation 1993-2006 in 16 European Countries
Occupations Grouped by Wage Tercile: Low, Middle, High
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The Need to Think in Terms of Tasks

Tasks and automation at the center of technological change throughout the last 200
years.
horse-powered reapers, harvesters, and threshing machines replaced manual labor
machine tools replaced labor-intensive artisan techniques
industrial robotics automated welding, machining, assembly, and packaging
software automated routine tasks performed by white-collar workers

Hard to map to canonical production function factor-augmenting technologies:
Y = F(ALL AkK).

In this formulation, allocation of tasks to factors remain unchanged, and
technological change makes capital (or labor) uniformly more productive in all tasks.



Thinking in Terms of Tasks: Framework
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Allocation of Tasks to Factors
Cost of production
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Capital-Augmenting Technological Change
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Automation: An Increase from /
Cost of production
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New Tasks: N shifts to N/
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Thinking in Terms of Tasks: Aggregate Representation
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The labor share is given by
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/ Task-price subs.

When ¢ =1 or v5(z) = v¥(z) = 1, then
Factor-augmenting technologies and automation work through different channels:
vs task-price substitution

Automation always reduces the labor share regardless of the value of o.



Thinking in Terms of Tasks: Labor Demand

The labor share also determines labor demand:

WL =Y xst Output

—

Labor share
Wage bill as
measure of labor demand

For now, ignoring markups and other non-competitive elements.

Let us also postpone a discussion of inequality until later, focusing for now on average
wages.



Automation and Labor Demand
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In the absence of the displacement effect, the wage bill changes proportionately to
output, and the labor share is constant.

Because the displacement effect is negative, wage bill increases less than output.

Net effect on wage bill depends on technology/context:
“prilliant technologies,” large displacement effect and large productivity gains
“so-so technologies,” large displacement effect and small productivity gains

Modest productivity growth does not necessarily signal slowdown of automation.



New Tasks and Labor Demand

The effects of creation of new tasks in which labor has a competitive advantage—an
expansion in N—can be determined similarly to our analysis of automation:

dIn WLI(L, K; 6)
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=Productivity effect+

is always positive, increasing the labor share.



Where Does the Labor Share Decline Comes from? 1947-1987

A: Labor Share within Each Industry, 1947-1987
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> Important to look at labor share in value added (not sales, since the share of
intermediates in sales is increasing over time).



Where Does the Labor Share Decline Comes from? 1987-2017

A: Labor Share within Each Industry, 1987-2017
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> Some declines in labor share in wholesale and retail during this time period.
> But the decline in the labor share is mostly a manufacturing phenomenon.



Automation and the Labor Share: Industry Evidence

Percent change in labor share, 1987-2017
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New Tasks and Changes in Task Content

Change in task content, 1987-2017

Change in task content of production, 1987-2017

50 50 Far
o " JERC—
. [eXe]
a1 s s Foraigmaiconicos
. N ® @
=504 . 50+
©
iing, except i '
Patiaum and cos s Saim i con
Wiring, excep o anc gz
-100- -100-
5 10 15 20 1 2 3 4
Share of new job titles, based on 1991 DOT and 1990 employment by occupation Number of emerging tasks, based on 1990 employment by occupation
Change in task content of production, 1987-2017 Change in task content of production, 1987-2017
50 Fame 50+ Fams
L M. [———
cistanmen Livs eraramert
e @)
04
L 4
Pieine vansporion
’ ° ‘. e
_50-]
i, ocspotaragas P
-100

5 10
Share of growth between 1990-2016 in occupations not in industry in 1990

-20 0
Percent increase in number of occupations represented in industry



Robots and Jobs: Local Labor Market Effects
Let's look at the equilibrium effects of automation in a little more detail, focusing on
local labor markets affected by robots.
Data from decennial censuses, ACS and various other sources, plus, crucially, from the
International Federation of Robotics (IFR) on industry-level robots data across countries.

Zero in on labor markets where the distribution of industry employment makes adoption
of robots more likely — according to “exposure to robots” measure in Acemoglu and
Restrepo (JPE, 2020).

Loosely speaking, exposure to robots is given by a Bartik measure of baseline industrial
structure interacted with the penetration of robots into that industry in countries that
are more advanced than the US in robot adoption:

exposure to robots, = Z robot penetration industry; x

i
= ZW,‘X

Then see how this affects employment and wages.



Reality Check: Exposure to Robots and Robotics Activity

> No data on robot adoption at the commuting zone level, but we can use robot integrator
activity (from Leigh and Kraft, 2017), which is an excellent proxy for local robotics
activity.
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Exposure to Robots and Local Employment
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b Dashed line excludes the most exposed areas; thus the relationship is unchanged without
the key parts of the industrial heartland.



Exposure to Robots and Local Wages
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Exposure to Robots and Task Content of Production

Panel B. Changes in employment by occupation
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The decline in areas exposed to robots comes from occupations where workers perform
tasks that are being replaced by robots.



Robots and Jobs: Recap

The results shown in the previous four figures are highly robust (to various demographic
and economic controls, in various subsamples, and most importantly to the inclusion of
other technology measures, proxying for non-automation technologies).

Moreover, no pre-trends — more exposed commuting zones were not on differential
economic trends before the 1990s.

Overall, this evidence suggests significant displacement effects associated with changes in
the task structure.

But the local labor market context is not ideal for seeing changes in labor share and
substitution between different types of workers (partly because, as emphasized in
Acemoglu and Restrepo, 2020a, there are market-level adjustments in services as well).

For that reason, we now turn to firm-level evidence.



Inequality

Changes in task content affect different types of workers differently, and thus also have
first-order effects on inequality.

How much have these changes impacted changes in wage structure (starting with the
us)?

Answer: quite a lot.

Acemoglu and Restrepo (2021): about 60-70 percent of changes in US wage structure
due to automation.



What about Al7?

Measure Al from its footprints in vacancies from Burning Glass.

Huge increase in Al since 2015.

Share of Al Vacancies in Burning Glass Share of Al Vacancies by Broad Industry
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Establishment Share of Al Vacancies by Quartile of Al Exposure
Define Al exposure using various measures, all related to task structure and
Al-replaceable tasks at the establishment level.

Al surge driven by establishments with more Al-replaceable tasks.
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Al

Negatively Associated with Establishment Hiring

Felten et al Measure SML Measure Webb Measure
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Acemoglu, Autor, Hazel and Restrepo (2021) show that this is a robust pattern of
establishments hiring, especially with the Felten et al. and Webb measures of Al
exposure.

Al so far mostly focused on algorithmic automation of simple tasks.



Understanding the Changing Nature of Labor Demand: Displacement
and Reinstatement, 1947-1987

> Change in task content=displacement + reinstatement.
> Empirical counterparts of automation and new tasks.
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Figure: Estimates of the displacement and reinstatement effects, 1947-1987.



Understanding the Changing Nature of Labor Demand: Displacement
and Reinstatement, 1987-2017

Change in task content of production, 1987-2017 Manufacturing task content of production, 1987-2017
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Figure: Estimates of the displacement and reinstatement effects, 1987-2017.

> Very different than during 1947-1987.
> Much faster displacement and much slower reinstatement.

> Changes in tasks content correlated with measures of automation and new tasks —
consistent with theory.



Double Whammy: So-so Automation
Recall that — via productivity effect — automation may generate benefits for labor.
However, when policies or distorted visions encourage excessive automation, we end up
with — hence plenty of labor displacement, but not much

productivity gains (impact on TFP may even be negative).
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Correcting Excessive Automation: Redirecting Technological Change

Particularly important to redirect Al, since it is a broad technological platform that can
be used for many things, several of them human complementary—rather than excessively
automating.

How to do that?

First, distortions encouraging excessive automation can be removed.

Acemoglu, Manera and Restrepo (2020): a huge gap has opened up between taxes on
capital and labor, partly because of very generous depreciation allowances. This
encourages firms to replace workers with machines.

Government support for “blue sky” research, which is arguably critical for new tasks, has
declined. This is easy to correct, but what type of research to support?

Even more importantly, government leadership of the direction of research has been
abandoned in favor of the vision of big tech companies. But the big tech business model
focuses on (algorithmic) automation at the expense of pretty much anything else. This
again underscores the importance of redirecting technological change.

In the area of technological change, we may also need a fundamental institutional
overhaul.



Lessons from Renewable Energy

Lessons from renewable energy: huge redirection of technological change. What did it
take? Subsidies to clean energy am a but first based on a measurement framework
(which we currently don't fully have in the area of excessive automation).

Equally important was a change in social norms—awareness among consumers about
climate change, pressure from consumers and employees.

In the area of technological change, we may also need a fundamental institutional
overhaul.



Conclusion: Implications for the Future of Work

But there are really two faces of automation—especially relevant for Al.

Good automation — high-productivity automation technology going hand-in-hand with
new tasks — can contribute to productivity and labor demand.

But bad or reduces employment growth and worsens the distribution of
income — esp. when there is excessive automation due to policy or vision distortions.
The problem is even worse when automation is not counterbalanced by

Preliminary evidence that a highs going very much in this direction of excessive
(algorithmic) automation.

If the future is one of ceaseless algorithmic automation and nothing else, then the future
of work will not be bright. There would be lower and lower labor share across industries
and in national income. And there would be no guarantee of sufficient job growth.
Improving labor market institutions, by itself, cannot be the solution — if we push wages
up, this will cause more automation, unless technology becomes more “human-friendly”.
But good automation, particularly when combined with rapid creation of new tasks for
workers, can be powerful engine of growth and prosperity.
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