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I Declining labor share in the US; similar in Europe and the emerging world.
I Capital deepening? Markups? Monopsony? The march forward of technology?
I I will argue: much more connected to the changing task content of production | in

particular driven by excessive automation.
I AI the next act in the suite of automation technologies|though no technological

necessity that it should be.



Some Consequences: Wages
I Labor market trends over the last several decades look nothing like a tide lifting all boats.
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Rise in Inequality Is Not Just a US Phenomenon
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Automation is Not Just a US Phenomenon
I Similar polarization of employment| but not of wages, indicating an important role for

labor market institutions.



The Need to Think in Terms of Tasks

I Tasks and automation at the center of technological change throughout the last 200

years.

1. horse-powered reapers, harvesters, and threshing machines replaced manual labor

2. machine tools replaced labor-intensive artisan techniques

3. industrial robotics automated welding, machining, assembly, and packaging

4. software automated routine tasks performed by white-collar workers

I Hard to map to canonical production function factor-augmenting technologies:

Y = F (ALL;AKK ):

I In this formulation, allocation of tasks to factors remain unchanged, and

I technological change makes capital (or labor) uniformly more productive in all tasks.



Thinking in Terms of Tasks: Framework
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I Tasks can be produced using capital or labor:

Y(z) =

{
A
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New tasks

Feasible to automate

I Comparative advantage: L(z)=K (z) and L(z) increasing in z .



Allocation of Tasks to Factors

I Tasks above I are technologically infeasible to automate.



Labor-Augmenting Technological Change



Capital-Augmenting Technological Change



Automation: An Increase from I to I
0



New Tasks: N shifts to N
0



Thinking in Terms of Tasks: Aggregate Representation
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I The labor share is given by

s
L =
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Task-price subs.

I When � = 1 or L(z) = K (z) = 1, then Γ = N � I .

I Factor-augmenting technologies and automation work through di�erent channels: task

content vs task-price substitution

I Automation always reduces the labor share regardless of the value of �.



Thinking in Terms of Tasks: Labor Demand

I The labor share also determines labor demand:

WL = Y � s
L

Wage bill as
measure of labor demand

Output

Labor share

I For now, ignoring markups and other non-competitive elements.

I Let us also postpone a discussion of inequality until later, focusing for now on average

wages.



Automation and Labor Demand
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I In the absence of the displacement e�ect, the wage bill changes proportionately to

output, and the labor share is constant.

I Because the displacement e�ect is negative, wage bill increases less than output.

I Net e�ect on wage bill depends on technology/context:
I \brilliant technologies," large displacement e�ect and large productivity gains

I \so-so technologies," large displacement e�ect and small productivity gains

I Modest productivity growth does not necessarily signal slowdown of automation.



New Tasks and Labor Demand

I The e�ects of creation of new tasks in which labor has a competitive advantage|an

expansion in N|can be determined similarly to our analysis of automation:

@ lnWL
d(L;K ; �)

@N
=Productivity e�ect+

Reinstatement e�ect

I The reinstatement e�ect is always positive, increasing the labor share.



Where Does the Labor Share Decline Comes from? 1947-1987

I Important to look at labor share in value added (not sales, since the share of

intermediates in sales is increasing over time).



Where Does the Labor Share Decline Comes from? 1987-2017

I Some declines in labor share in wholesale and retail during this time period.

I But the decline in the labor share is mostly a manufacturing phenomenon.



Automation and the Labor Share: Industry Evidence
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New Tasks and Changes in Task Content
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Robots and Jobs: Local Labor Market E�ects
I Let's look at the equilibrium e�ects of automation in a little more detail, focusing on

local labor markets a�ected by robots.
I Data from decennial censuses, ACS and various other sources, plus, crucially, from the

International Federation of Robotics (IFR) on industry-level robots data across countries.

I Zero in on labor markets where the distribution of industry employment makes adoption

of robots more likely | according to \exposure to robots" measure in Acemoglu and

Restrepo (JPE, 2020).

I Loosely speaking, exposure to robots is given by a Bartik measure of baseline industrial

structure interacted with the penetration of robots into that industry in countries that

are more advanced than the US in robot adoption:

exposure to robotsc =
∑
i

robot penetration industryi � baseline industry shareic

=
∑
i2I

APR i � `1970zi ;

I Then see how this a�ects employment and wages.



Reality Check: Exposure to Robots and Robotics Activity
I No data on robot adoption at the commuting zone level, but we can use robot integrator

activity (from Leigh and Kraft, 2017), which is an excellent proxy for local robotics

activity.



Exposure to Robots and Local Employment

I Dashed line excludes the most exposed areas; thus the relationship is unchanged without

the key parts of the industrial heartland.



Exposure to Robots and Local Wages

I Dashed line excludes the most exposed areas.



Exposure to Robots and Task Content of Production

I The decline in areas exposed to robots comes from occupations where workers perform

tasks that are being replaced by robots.



Robots and Jobs: Recap

I The results shown in the previous four �gures are highly robust (to various demographic

and economic controls, in various subsamples, and most importantly to the inclusion of

other technology measures, proxying for non-automation technologies).

I Moreover, no pre-trends | more exposed commuting zones were not on di�erential

economic trends before the 1990s.

I Overall, this evidence suggests signi�cant displacement e�ects associated with changes in

the task structure.

I But the local labor market context is not ideal for seeing changes in labor share and

substitution between di�erent types of workers (partly because, as emphasized in

Acemoglu and Restrepo, 2020a, there are market-level adjustments in services as well).

I For that reason, we now turn to �rm-level evidence.



Inequality

I Changes in task content a�ect di�erent types of workers di�erently, and thus also have

�rst-order e�ects on inequality.

I How much have these changes impacted changes in wage structure (starting with the

US)?

I Answer: quite a lot.

I Acemoglu and Restrepo (2021): about 60-70 percent of changes in US wage structure

due to automation.



What about AI?
I Measure AI from its footprints in vacancies from Burning Glass.
I Huge increase in AI since 2015.
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Narrow AI vacancies up from 0.1% to 0.6%



Establishment Share of AI Vacancies by Quartile of AI Exposure
I De�ne AI exposure using various measures, all related to task structure and

AI-replaceable tasks at the establishment level.

I AI surge driven by establishments with more AI-replaceable tasks.
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AI Negatively Associated with Establishment Hiring
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I Acemoglu, Autor, Hazel and Restrepo (2021) show that this is a robust pattern of

establishments hiring, especially with the Felten et al. and Webb measures of AI

exposure.

I AI so far mostly focused on algorithmic automation of simple tasks.



Understanding the Changing Nature of Labor Demand: Displacement

and Reinstatement, 1947-1987

I Change in task content=displacement + reinstatement.

I Empirical counterparts of automation and new tasks.
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Figure: Estimates of the displacement and reinstatement e�ects, 1947-1987.



Understanding the Changing Nature of Labor Demand: Displacement

and Reinstatement, 1987-2017
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Figure: Estimates of the displacement and reinstatement e�ects, 1987-2017.

I Very di�erent than during 1947-1987.

I Much faster displacement and much slower reinstatement.

I Changes in tasks content correlated with measures of automation and new tasks |

consistent with theory.



Double Whammy: So-so Automation
I Recall that | via productivity e�ect | automation may generate bene�ts for labor.
I However, when policies or distorted visions encourage excessive automation, we end up

with so-so automation technologies | hence plenty of labor displacement, but not much

productivity gains (impact on TFP may even be negative).



Correcting Excessive Automation: Redirecting Technological Change
I Particularly important to redirect AI, since it is a broad technological platform that can

be used for many things, several of them human complementary|rather than excessively

automating.

I How to do that?

I First, distortions encouraging excessive automation can be removed.

I Acemoglu, Manera and Restrepo (2020): a huge gap has opened up between taxes on

capital and labor, partly because of very generous depreciation allowances. This

encourages �rms to replace workers with machines.

I Government support for \blue sky" research, which is arguably critical for new tasks, has

declined. This is easy to correct, but what type of research to support?

I Even more importantly, government leadership of the direction of research has been

abandoned in favor of the vision of big tech companies. But the big tech business model

focuses on (algorithmic) automation at the expense of pretty much anything else. This

again underscores the importance of redirecting technological change.

I In the area of technological change, we may also need a fundamental institutional

overhaul.



Lessons from Renewable Energy

I Lessons from renewable energy: huge redirection of technological change. What did it

take? Subsidies to clean energy am a but �rst based on a measurement framework

(which we currently don't fully have in the area of excessive automation).

I Equally important was a change in social norms|awareness among consumers about

climate change, pressure from consumers and employees.

I In the area of technological change, we may also need a fundamental institutional

overhaul.



Conclusion: Implications for the Future of Work

I But there are really two faces of automation|especially relevant for AI.

I Good automation | high-productivity automation technology going hand-in-hand with

new tasks | can contribute to productivity and labor demand.

I But bad or so-so automation reduces employment growth and worsens the distribution of

income | esp. when there is excessive automation due to policy or vision distortions.

I The problem is even worse when automation is not counterbalanced by new tasks.

I Preliminary evidence that a highs going very much in this direction of excessive

(algorithmic) automation.

I If the future is one of ceaseless algorithmic automation and nothing else, then the future

of work will not be bright. There would be lower and lower labor share across industries

and in national income. And there would be no guarantee of su�cient job growth.

I Improving labor market institutions, by itself, cannot be the solution | if we push wages

up, this will cause more automation, unless technology becomes more \human-friendly".

I But good automation, particularly when combined with rapid creation of new tasks for

workers, can be powerful engine of growth and prosperity.
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