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Review
▪ Analysis of large field experiments — nice to have a 2018 replication:
▪ “students who received the treatment interventions were on average 6.4 ±

0.6 (2017) and 12.1 ± 0.7 (2018) percentage points more likely to submit 
their FAFSA forms by the priority deadline, increasing early filing rates from 
37% to 43% and 38% to 50%”

▪ Use causal forests (and other techniques) to estimate treatment effects 
for students with different characteristics (HTEs, CATEs)

▪ Learn and evaluate targeting policies for this intervention



Outline
1. Challenges in heterogeneous treatment effect estimation
2. Learning a targeting policy vs.

learning heterogeneous treatment effects
3. Theory and intuitions about heterogeneous treatment 

effects
4. Designing the first experiment



Learning HTEs is hard
▪ Even in a very well-powered experiment for overall effects, we often find 

ourselves struggling to precisely and credibly estimate heterogeneous 
treatment effects
▪ Here we have z-statistics >10 for the ATEs, but things get harder for CATEs
▪ In practice, large sample sizes often accompanied by high dimensional 

covariates

▪ This paper documents challenges in calibrated estimation of CATEs



Learning policies vs. learning HTEs 
▪ When learning HTEs (CATEs), the focus is often on point estimates and 

then we evaluate these by looking at, e.g., MSE and hopefully other 
measures of fit (as this paper does!) like calibration
▪ In a narrow (statistical decision theory) sense, point estimates are a decision 

— but what really are we deciding based on them?

▪ Learning a policy is just learning a decision rule for assigning units to 
treatments
▪ This is often essentially a classification problem (if the actions are discrete) 

with loss from misclassification depending on the true treatment effects
▪ Assigning unit i, which should be in control, to treatment results in a loss of -τi



Learning policies vs. learning HTEs 
▪ Learning a policy is just learning a decision rule for assigning units to 

treatments
▪ This is often essentially a classification problem (if the actions are discrete) 

with loss from misclassification depending on the true treatment effects
▪ Assigning unit i, which should be in control, to treatment results in a loss of 

-τi

Who should be targeted with an intervention?
I For each unit (e.g., customer), we observe their characteristics (i.e.,

features, covariates, context) Xi 2 X and can choose an action a 2 A
I We then observe the outcome (i.e. reward) for that action Yi(a)

I A policy ⇡ is a way of making these choices about actions. It maps
from characteristics to actions, i.e., ⇡ : X ! �(A)

I Then targeting is a matter of finding a good (or the best) policy within
some set of (perhaps simple) possible policies ⇡, i.e.,

⇡⇤ = argmax⇡V (⇡)

where V (⇡) = E⇡[Yi(Ai)]

I We do this using past data, ideally where we’ve randomized the
actions taken in some way
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Comparing 
targeting policies
▪ From a single experiment, 

one can evaluate many 
targeting policies — even if 
each is not specified in 
advance:
▪ Look at cases where observed 

randomized treatment 
matches what the policy of 
interest would have done

▪ Many policies agree on 
many cases, so there is lots 
of cancelation

Universe of 
customers

Treated by neither policy

Treated by policy 1

Treated by 
policies 1 or 2Treated

by policy 2
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357,653 households received action a, 360,773 households received action b, and 370,936 households 

received action c. The households in the STZ study were grouped into carrier routes (approximately 400 

households), and the randomization was conducted at the carrier route level, so that all of the households 

in the same carrier route received the same treatment. As a result there is more variation in sample sizes 

between the treatments than we might otherwise expect. 

In Table 4.1 we summarize the segmentation of these households according to the actions recommended 

by each of two policies (Policy 1 and Policy 2). There are three possible actions and two policies and so 

this yields nine possible segments. Because the policies dictate an action for each customer, and this 

action is known, constructing the segmentation of customers by recommended actions is straightforward.  

Table 4.1 An Example of Segmentation by Recommended Action 

Segment 

Label 

Recommended 

Action 
Sample Size               

Policy 1 Policy 2 Action a Action b Action c 

Segment_aa a a 595 2,562 824 

Segment_ab a b 13,038 11,495 16,086 

Segment_ac a c 20,229 8,148 16,164 

Segment_ba b a 15,602 12,847 18,784 

Segment_bb b b 198,416 215,824 195,885 

Segment_bc b c 51,421 45,211 65,311 

Segment_ca c a 1,239 2,098 70 

Segment_cb c b 19,551 19,972 16,215 

Segment_cc c c 37,562 42,616 41,597 

 Total  357,653 360,773 370,936 

The table reports the sample sizes from an experiment reported by Simester, Timoshenko and Zoumpoulis 
(2018). It reports the sample size in the three experimental conditions associated with actions a, b and c. 
The shading identifies the sample that can be used to evaluate Policy 1. The average profits per segment 
and per experimental condition are reported in the Appendix. 

The segmentation facilitates evaluation of policies. For example, the shading in Table 4.1 illustrates how 

this sample can be used to evaluate Policy 1. To evaluate a policy within a segment, we use the customers 

within the segment that received the action recommended by that policy. For example, within the segment 

of customers in which Policy 1 recommended action a and Policy 2  recommended action b, we evaluate 

Policy 1 using the 13,038 customers that were randomly assigned to action a.  

Simester, Duncan, Artem Timoshenko, and Spyros I. Zoumpoulis. "Efficiently evaluating targeting policies: Improving on champion vs. challenger experiments." Management Science 66.8 (2020): 3412-3424.

Where do policy 
1 and policy 2 
disagree?



Targeting promotional discounts
Post-stratified by what the targeted policy recommends
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Figure 4.3: The figure focuses on households in the Lasso and uniform $25 paid conditions. It reports the average 
Stage 2 Profit when grouping households by the treatment recommended by Lasso. To preserve confidentiality, the 
profits are indexed to 100 for the Lasso Policy $25 Paid offer data point. The error bars represent 95% confidence 
intervals. Complete findings, including standard errors, are reported in the Appendix. 

Reassuringly, we do not observe a significant difference between conditions for the households for which 
Lasso recommended sending the $25 paid offer. This is true even though this is the largest sub-group of 
households (73.63% of them). For these households, the comparison between conditions represents a 
randomization check. They received the same treatments and so any differences in the outcome could 
only be attributed to differences in the households themselves. The findings also reveal another distinctive 
pattern. Lasso recommends mailing the $25 paid offer to the most valuable households. It is only the less 
valuable households to which it chooses to send the 120-day free trial (or not to mail). In the Appendix 
we repeat this analysis for all of the optimized models.  

As a final set of preliminary results, in the next sub-section we report how the profits earned from the 
three experimental treatments in Stage 1 varied with respect to each of the targeting variables.  

4.4 Parameter Values 

To demonstrate the relationship between the Profit and the targeting variables, in the Appendix we report 
the parameter estimates when using OLS to regress the Profit outcome measure on the thirteen targeting 
variables. There are no significant differences in the direction of the relationship between profits and the 
targeting variables across the three treatment conditions, but coefficients vary in their magnitudes. This 
variation provides an opportunity for the targeting methods to vary the optimal action across carrier 
routes. Across the three models, the strongest indicator that a carrier route will yield large profits is a high 
previous response rate (3yr Response). The coefficient on this variable is approximately three times larger 
than any other coefficient (in absolute value). Other significant coefficients indicating larger expected 
profits include: a short distance to the nearest own store (Distance), a long distance to the competitors’ 
store (Comp. Distance), a concentration of single family housing (Single Family), a low average age 
(Age), and a high proportion of households that were previously paid members (Past Paids). 

Our initial findings indicate that the model-driven and distance-driven methods had a better overall 
performance than the classification methods. In the next section we investigate the robustness of this 
finding by re-examining the performance of the methods in different regions of the parameter space. This 
allows us to evaluate the relative performance of the methods when confronted with data challenges that 
are typical in a prospecting setting.  

(these match except 
for sampling error)

Policy

Simester, Duncan, Artem Timoshenko, and Spyros I. Zoumpoulis. "Efficiently evaluating targeting policies: Improving on champion vs. challenger experiments." Management Science 66.8 (2020): 3412-3424.

Uniform action a

Action A Action B Action C(ontrol) Action
B or C 



Targeting retail catalogs
Results of randomizing which customers get catalogs
▪ Substantial ATE (2.6 in 2015, 2.4 in 2106) on sales, which is larger than 

cost/margin = 2.003

▪ Maybe we should just treat everyone?
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Distribution of predicted 
treatment effects using a lasso 
(L1-penalized) regression
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Hitsch, G., & Misra, Sanjog. (2018). Heterogeneous Treatment Effects and Optimal Targeting Policy Evaluation. Working paper. 
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3111957



Targeting and budget constraints
Costs of treatment vary from person to person
▪ In addition to each person having a (possibly different) treatment effect Δi, 

they have some cost Ci

▪ So far we’ve been able to just treat everyone with Δi > Ci (or just 
incorporate costs into Δi already)

But we can’t spend more than some budget $b
▪ This might arise from firm-wide constraints or because finance is 

(reasonably) skeptical about how marketing is spending

▪ So we want to find who we should target — while limited by this budget

Luedtke, A. R., & van der Laan, M. J. (2016). Optimal individualized treatments in resource-limited settings. The International Journal of Biostatistics, 12(1), 283-303.
Sun, H., Du, S., Wager, S. (2021). Treatment allocation under uncertain costs. https://arxiv.org/abs/2103.11066  



Targeting and budget constraints
Rank people by ROI, targeting up 

to budget
▪ Rank people by Δi / Ci

▪ (This is just ROI + 1)

▪ Keep adding until we reach our budget

▪ This is a version of “knapsack 
problem”

▪ Can use fancier methods to estimate 
this ratio

Luedtke, A. R., & van der Laan, M. J. (2016). Optimal individualized treatments in resource-limited settings. The International Journal of Biostatistics, 12(1), 283-303.
Sun, H., Du, S., Wager, S. (2021). Treatment allocation under uncertain costs. https://arxiv.org/abs/2103.11066  
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Targeting a promotion
A free “Uber Pass”
▪ Have 39 covariates Xi

▪ Training: 50k; Test: 500k users

Sun, H., Du, S., Wager, S. (2021). Treatment allocation under uncertain costs. https://arxiv.org/abs/2103.11066  

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cost
ga

in

●

●

●

●

●

●

●

●

●

● ignore cost
direct ratio
instrumental forest

cost curve cost vs. gain

Figure 2: Cost curves for the marketing application described in Section 3.2, with all meth-
ods trained on n = 50, 000 samples. The left panel shows a cost curve estimated via
inverse-propensity weighting on a test set of size n = 500, 000, as described in the text. As
in Figure 1, we re-scale the cost curve to adjust for the test set size (i.e., we divide all cu-
mulative sums by ntest). The right panel shows a scatterplot of test set observations where,
on the x-axis we show �̂(Xi), while on the y-axis we show the implied reward implied by
the instrumental forest method, i.e., ⌧̂instr(Xi) = ⇢̂(Xi)�̂(Xi). We re-scale cost and rewards
so that E [�(Xi)] = E [⌧(Xi)] = 1, i.e., the axes in both above displays are unit free.

achieves a value of 0.35 ± 0.03, with 95% confidence intervals obtained via the bootstrap
[Efron, 1982].3 In other words we can expect to get roughly 35% ± 3% of the rewards
from targeting everyone by only spending 20% of the budget needed to target everyone.
In comparison, the 95% confidence interval of the B = 0.2 value for the “direct ratio”
baseline is 0.28 ± 0.03, while for the “ignore cost” baseline it is 0.21 ± 0.04. Furthermore,
a McNemar-type paired bootstrap yields a 95% confidence interval of 0.07 ± 0.03 for the
value di↵erence from using the treatment rule learned using instrumental forests versus the
direct ratio baseline, and an associated p-value of 5⇥ 10�6.

The right panel of Figure 2 provides further insight into the data-generating distribution.
As in our simulation study, we see that there is considerable alignment between the estimated
costs and rewards of treating any unit; then, a good treatment rule should prioritize units
that are above the diagonal to those who are below it. The larger observed di↵erence in
performance between the “direct ratio” baseline and our proposed method relative to that
seen in the simulation study may reflect the instrumental forest being able to better leverage
a large sample size when dealing with a more complex statistical setting.

3This confidence statements are conditional on the training set, i.e., we take the prioritization rules
learned on the training set as given, and only quantify test set uncertainty in estimating the cost curve.
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Figure 5: Total estimated FAFSA renewal rate (y-axis) by targeting a given fraction (x-axis) of
students according to di�erent cross-fitted predictions in the 2017 data with early covariates, including a
prediction of outcomes absent treatment (“Baseline”), a prediction of future enrollment (“Enrollment”),
and a prediction of treatment e�ects (“CATE”). Shown are augmented inverse-propensity weighted
estimates with 95% confidence intervals that represent the pointwise uncertainty of the di�erence in
renewal rate relative to the random policy that assigns the same fraction to treatment.
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Do we have budget constraints 
in this setting?

Given that we don’t find groups 
with negative CATEs, can we 
just treat everyone?



Some vague intuitions about HTEs
▪ Say our outcome Y is a binary choice

1. If treatment increased utility of choice, seems like effects should be 
largest on people with baseline expected utility near 0 (if people are 
random utility maximizers)

2. If treatment works for the same fraction of all people, but can’t get 
people who already take choice 1 to do anything different, then effects 
are largest for groups with small E[Y(0) | X = x]

3. If the treatment has substantial costs or might have negative effects, 
what then?



0

HTE distributions

Treatment effect: τi or τ(Xi) 







57.0% and 47.8%) among customers in L10. Second, the in-
trinsic churn rate (57.0% and 47.8%) for customers with highest
LIFT (those in L10) is not necessarily the highest, implying that
customers who are more sensitive to the retention efforts are not
necessarily at the highest risk of churning.

Similarly, Figure 2, Panels C and D, illustrate churn rates for
customers in Study 2, by different levels of RISK and LIFT,

respectively. In this case, the focal company should not have
targeted customers at high risk of churning. In turn, these are the
customers for whom the intervention was most harmful. For
example, among the R10 group (those whose RISK is in the
highest decile), the churn rate was 79.4% in the control compared
with 82.7% in the treatment (i.e., the intervention increased
churn by 3.3 percentage points among that group of customers).

Figure 2
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Notes: Churn rates are estimated for each experimental condition, when targeting customers with different levels of churn propensity (i.e., RISK) versus targeting
customers with different levels of sensitivity to the retention intervention (i.e., LIFT).
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Ascarza (2018) “Retention Futility”. Study 2: Membership organization in North America

Targeting by predicted 
churn rates

▪ Fit a model predicting churn, 
getting a churn risk score 
per customer

▪ What if we targeted the top 
churners?
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Ascarza (2018) “Retention Futility”. Study 1: Wireless service provider in the Middle East

Targeting by predicted 
churn rates

▪ Fit a model predicting churn, 
getting a churn risk score 
per customer

▪ What if we targeted the top 
churners?

▪ Can work quite poorly, but 
maybe this is not typical



Intuition: Large effects for “fence sitters”

Your responses to this survey 
are helping researchers in 
your region and around the 
world understand how people 
are responding to COVID-19. 
For example, we estimate 
from survey responses in the 
previous month that X% 
[Y%] of people in your 
country say they will [may]
take a vaccine if one is made 
available.

Vaccine norms info:
narrow and [broad] 
conditions

Data from a pre-registered, 
randomized experiment (N=484,239) 
embedded in a survey in 23 countries

Moehring, A., Collis, A., Garimella, K., Rahimian, M., Aral, S., & Eckles, D. (2021). 
Surfacing norms to increase vaccine acceptance. https://doi.org/10.31234/osf.io/srv6t
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Using (often informal) prior about HTEs for 
experimental design
▪ Treating people with low (or high, or 

middle) probability of outcome with 
higher probability, but allow everyone to 
be either treated or not with some 
probability
▪ Can be interpreted as reflecting our prior 

belief about the imperfect relationship 
between predicted Y(0) and treatment effects

▪ If we’re right, lowers regret compared with 
uniform experiment — and gives us more 
precision to learn good targeting policies


