Structural Deep Learning in Conditional Asset Pricing

Jianqing Fan

Princeton University

https://fan.princeton.edu/

with Tracy Ke, Yuan Liao, Andreas Neuhierl

Jianqing Fan (Princeton University)

Structural Deep Learning in CAP

Outlines

Introduction

- 2 Interpretable Asset Pricing model
- Methods of Estimation
- Asymptotic Theory

Empirical Application

э

イロト イボト イヨト イヨト

Outlines

Introduction

- 2 Interpretable Asset Pricing model
- Methods of Estimation
- Asymptotic Theory
- Sempirical Application

э

Introduction

臣

イロト イヨト イヨト イヨト

- Returns are noisy
- Understanding expected returns and volatility is all we can do
- Understanding expected returns is still really hard!

3

<ロト <回ト < 回ト < 回ト < 回ト -

Why so hard?

High-dim set of possible signals (firm characteristics).

★ Theory is silent of how signals relate to returns

- Unknown functional forms
- Unknown dynamics (risks can change over time)
- Unknown interpretation (risk vs. mispricing)

★ Curse of dimensionality of nonparametric modeling

Why so hard?

High-dim set of possible signals (firm characteristics).

★ Theory is silent of how signals relate to returns

- Unknown functional forms
- Unknown dynamics (risks can change over time)
- Unknown interpretation (risk vs. mispricing)

★ Curse of dimensionality of nonparametric modeling

(日) (同) (三) (三)

Why so hard?

High-dim set of possible signals (firm characteristics).

★ Theory is silent of how signals relate to returns

- Unknown functional forms
- Unknown dynamics (risks can change over time)
- Unknown interpretation (risk vs. mispricing)

★ Curse of dimensionality of nonparametric modeling

Why so hard?

High-dim set of possible signals (firm characteristics).

★ Theory is silent of how signals relate to returns

- Unknown functional forms
- Unknown dynamics (risks can change over time)
- Unknown interpretation (risk vs. mispricing)

★ Curse of dimensionality of nonparametric modeling

Classical Solutions

- ★ Additive model: $E[y|x_1, ..., x_d] = \sum_{i=1}^d f_i(x_i)$ rate: $N^{-2/5}$ ★ Single index models $E[y|X] = f(X^T \beta)$ rate: $N^{-2/5}$
- ★ Structural rather than algorithmic solutions.

Statistical Machine Learning such as **Neural networks** come to rescue

イロト 不得 トイラト イラト 二日

Classical Solutions

- ★ <u>Additive model</u>: $E[y|x_1, ..., x_d] = \sum_{i=1}^d f_i(x_i)$ rate: $N^{-2/5}$
- **<u>Single index models</u>** $E[y|X] = f(X^T\beta)$ rate: $N^{-2/5}$
- ★ Structural rather than algorithmic solutions.

Statistical Machine Learning such as Neural networks come to rescue

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のQの

Why Deep Neural Networks?

★ Univ. approx: any sup-smooth function can be appr. by an NN (Barron, 93):

(x) Inv Fourier
$$\int_{\mathbb{R}^d} \exp(i\omega^T x) \tilde{f}(\omega) d\omega = E_{\omega \sim g} \exp(i\omega^T x) \frac{f(\omega)}{g(\omega)}$$
$$\approx N^{-1} \sum_{j=1}^N \underbrace{\exp(i\omega_j^T x)}_{\sigma(\omega_j^T x)} \underbrace{\frac{\tilde{f}(\omega_j)}{g(\omega_j)}}_{\text{weight } \beta_j} + \underbrace{O_P(N^{-1/2})}_{\text{no curse-of-dim.}}, \quad \text{if } E_{\omega \sim g} \left| \frac{\tilde{f}(\omega)}{g(\omega)} \right|^2 < C.$$

 \star A tooth function w/ $\mathcal{O}(2^k)$ oscillations (Telgarsky, 16) is

- •a ReLU-DNN with depth $\mathcal{O}(k)$ and width $\mathcal{O}(1)$,
- •a one-layer ReLU-DNN but with $\Omega(2^k)$ nodes
- •extendable to Lipchitz functions.

Adapt to unknown comp: Compositions

From Bauer and Kohler, 2019, AOS

< □ > < □ > < □ > < □ >

of DNN is a deeper DNN. •No COD in implementation.

f

Why Deep Neural Networks?

★ Univ. approx: any sup-smooth function can be appr. by an NN (Barron, 93):

(x) Inv Equiver
$$\int_{R^d} \exp(i\omega^T x) \tilde{f}(\omega) d\omega = E_{\omega \sim g} \exp(i\omega^T x) \frac{f(\omega)}{g(\omega)}$$
$$\approx \qquad N^{-1} \sum_{j=1}^{N} \underbrace{\exp(i\omega_j^T x)}_{\sigma(\omega_j^T x)} \underbrace{\frac{\tilde{f}(\omega_j)}{g(\omega_j)}}_{\text{weight } \beta_j} + \underbrace{O_P(N^{-1/2})}_{\text{no curse-of-dim.}}, \quad \text{if } E_{\omega \sim g} \left| \frac{\tilde{f}(\omega)}{g(\omega)} \right|^2 < C.$$

★ A tooth function w/ $\mathcal{O}(2^k)$ oscillations (Telgarsky, 16) is

- •a ReLU-DNN with depth $\mathcal{O}(k)$ and width $\mathcal{O}(1)$,
- •a one-layer ReLU-DNN but with $\Omega(2^k)$ nodes.
- •extendable to Lipchitz functions.

From Bauer and Kohler, 2019, AOS

Image: A math a math

of DNN is a deeper DNN. •No **COD** in implementation.

f

Why Deep Neural Networks?

★ Univ. approx: any sup-smooth function can be appr. by an NN (Barron, 93):

(x) Inv Fourier
$$\int_{R^d} \exp(i\omega^T x) \tilde{f}(\omega) d\omega = E_{\omega \sim g} \exp(i\omega^T x) \frac{\tilde{f}(\omega)}{g(\omega)}$$
$$\approx \qquad N^{-1} \sum_{j=1}^{N} \underbrace{\exp(i\omega_j^T x)}_{\sigma(\omega_j^T x)} \underbrace{\frac{\tilde{f}(\omega_j)}{g(\omega_j)}}_{\text{weight } \beta_j} + \underbrace{O_P(N^{-1/2})}_{\text{no curse-of-dim.}}, \quad \text{if } E_{\omega \sim g} \left| \frac{\tilde{f}(\omega)}{g(\omega)} \right|^2 < C.$$

★ A tooth function w/ $\mathcal{O}(2^k)$ oscillations (Telgarsky, 16) is

- •a ReLU-DNN with depth $\mathcal{O}(k)$ and width $\mathcal{O}(1)$,
- •a one-layer ReLU-DNN but with $\Omega(2^k)$ nodes.
- •extendable to Lipchitz functions.

Adapt to unknown comp: Compositions

From Bauer and Kohler, 2019, AOS

hidden law

of DNN is a deeper DNN. •No COD in implementation.

f

What neural networks can do

- ML can explain more expected returns
- Produce good estimates of

 $\hat{y}_{it} = \mathbb{E}[\text{excess return}|\text{high dimensional info}]$

Jianqing Fan (Princeton University)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Understanding source of returns

- Provide an interpretation of $\widehat{y}_{i,t+1|t}$
- Decomposition into compensation for risk and mispricing
- Evolution of return components over time

イロト イポト イヨト イヨト

- ★ Impose mild economic structure
- ★ Expected returns from deep neural network
- **†** In-sample Expected return: mispricing + risk premium + factor realization
- ★ Out-of-sample prediction: mispricing + risk premium + factor innovation
- ★ Provide novel methods to estimate each of 3 component
- ★ Derive rigorous asymptotic theory
- **★** Factor accounts 95% (riskP: 1/5) and mispricing 5% (Sharpe: 1.23, \downarrow in t)

Predictions in asset pricing are very noisy due to factor realizations;
 should be removed for predictions.

Jianqing Fan (Princeton University)

Structural Deep Learning in CAP

・ロト ・四ト ・ヨト・

- ★ Impose mild economic structure
- Expected returns from deep neural network
- ★ In-sample Expected return: mispricing + risk premium + factor realization
- ★ Out-of-sample prediction: mispricing + risk premium + factor innovation
- ★ Provide novel methods to estimate each of 3 component
- ★ Derive rigorous asymptotic theory
- ★ Factor accounts 95% (riskP: 1/5) and mispricing 5% (Sharpe: 1.23, \downarrow in t)

Predictions in asset pricing are very noisy due to factor realizations;
 should be removed for predictions.

Jianqing Fan (Princeton University)

Structural Deep Learning in CAP

イロト 不得 トイヨト イヨト

- ★ Impose mild economic structure
- Expected returns from deep neural network
- **†** In-sample Expected return: mispricing + risk premium + factor realization
- ★ Out-of-sample prediction: mispricing + risk premium + factor innovation
- ★ Provide novel methods to estimate each of 3 component
- ★ Derive rigorous asymptotic theory
- \star Factor accounts 95% (riskP: 1/5) and mispricing 5% (Sharpe: 1.23, \downarrow in t)

Predictions in asset pricing are very noisy due to factor realizations;
 should be removed for predictions.

Jianqing Fan (Princeton University)

Structural Deep Learning in CAP

イロト イポト イヨト イヨト

- ★ Impose mild economic structure
- Expected returns from deep neural network
- **†** In-sample Expected return: mispricing + risk premium + factor realization
- ★ Out-of-sample prediction: mispricing + risk premium + factor innovation
- ★ Provide novel methods to estimate each of 3 component
- ★ Derive rigorous asymptotic theory
- ★ Factor accounts 95% (riskP: 1/5) and mispricing 5% (Sharpe: 1.23, \downarrow in t)
- Predictions in asset pricing are very noisy due to factor realizations;
 should be removed for predictions.

Jianqing Fan (Princeton University)

Structural Deep Learning in CAP

イロト イポト イヨト イヨト

★ Machine Learning in Finance

Freyberger et al. (2020), Gu et al. (2020) Bali et al. (2021), Bianchi et al. (2021), , Avramov et al. (2021), Chen et al. (2020), Cong et al. (2021), DeMiguel et al. (2020), Bryzgalova et al. (2020), Rossi and Utkus (2020), Li and Rossi (2020)

★ (Conditional) Factor pricing models

- Giglio and Xiu (2021); Giglio et al. (2021); Kim et al. (2021)
- Shanken (1990); Ferson and Harvey (1999); Lettau and Ludvigson (2001); Ghysels (1998); Gagliardini et al. (2016); Kelly et al. (2019, 2020); Gu et al. (2019)

★ Panel data / factor estimation

 Connor and Korajczyk (1986); Bai (2003); Stock and Watson (2002b); Connor et al. (2012); Fan et al. (2016)

イロト 不得下 イヨト イヨト 二日

Interpretable Asset Model

Э

イロト 不得 トイヨト イヨト

Conditional factor model:

$$y_{i,t} = \alpha_{i,t-1} + \beta'_{i,t-1} \lambda_t + \beta'_{i,t-1} (\mathsf{f}_t - \mathbb{E}\mathsf{f}_t) + u_{it}$$

- α potential mispricing
- β risk exposure
- λ_t factor risk premia
- f_t factor realization

■all time-varying

3

イロト 不得下 イヨト イヨト

Impact of Firm Characteristics

 $\mathbf{I}_{x_{i,t}}$ carry information about alphas and betas:

$$\begin{aligned} \alpha_{i,t-1} &= g_{\alpha,t}(\mathsf{x}_{i,t-1}) + \gamma_{\alpha,i,t-1} \\ \beta_{i,t-1} &= g_{\beta,t}(\mathsf{x}_{i,t-1}) + \gamma_{\beta,i,t-1} \end{aligned}$$

•
$$g_{\alpha,t}$$
 – mispricing function

- $g_{\alpha,t}(\cdot)$ and $g_{\beta,t}(\cdot)$ can change over time
- α and β may vary in high-frequency due to γ_t

イロト イヨト イヨト -

Structural machine learning predictions

★ Obtain $\widehat{m}_t(\cdot)$ by DNN on $\{(y_{i,t}, x_{i,t-1})\}_{i=1}^N$ for each t, estimating

$$m_t^0(x_{i,t-1}) = \mathbb{E}(y_{i,t}|x_{i,t-1}, f_t), \qquad y_{i,t} = m_t^0(x_{i,t-1}) + e_{i,t}.$$

★ Predict out-of-sample by "pluging in new data"

$$\widehat{y}_{i,t+1|t} = \widehat{m}_t(\mathsf{x}_{i,t})$$

★ Little interpretation about source of predictability.

Aim to open the black box

ヘロト 不得 ト イヨト イヨト 二日

Structural machine learning predictions

★ Obtain $\widehat{m}_t(\cdot)$ by DNN on $\{(y_{i,t}, x_{i,t-1})\}_{i=1}^N$ for each t, estimating

$$m_t^0(x_{i,t-1}) = \mathbb{E}(y_{i,t}|x_{i,t-1},f_t), \qquad y_{i,t} = m_t^0(x_{i,t-1}) + e_{i,t}.$$

★ Predict out-of-sample by "pluging in new data"

$$\widehat{y}_{i,t+1|t} = \widehat{m}_t(\mathsf{x}_{i,t})$$

★ Little interpretation about source of predictability.

Aim to open the black box

★ In-sample decomposition: Spot expected return

$$\widehat{m}_{t}(\mathsf{x}_{i,t-1}) \approx \underbrace{g_{\alpha,t}(\mathsf{x}_{i,t-1})}_{\text{mispricing}} + \underbrace{g_{riskP,t}(\mathsf{x}_{i,t-1})}_{g_{\beta,t}(\mathsf{x})'\boldsymbol{\lambda}_{t}} + g_{\beta,t}(\mathsf{x}_{i,t-1})'(\mathsf{f}_{t} - \mathbb{E}\mathsf{f}_{t})$$

-Enable us to asset contributions of each component.

• Out-of-sample decomposition: plug-in the "new" x_{i,t}:

$$\widehat{m}_{t}(\mathsf{x}_{i,t}) \approx g_{\alpha,t}(\mathsf{x}_{i,t}) + g_{riskP,t}(\mathsf{x}_{i,t}) + \underbrace{g_{\beta,t}(\mathsf{x}_{i,t})'(\mathsf{f}_{t} - \mathbb{E}\mathsf{f}_{t})}_{\text{factor realization}}$$

$$y_{i,t+1} \approx g_{\alpha,t}(\mathsf{x}_{i,t+1}) + g_{riskP,t}(\mathsf{x}_{i,t}) + \underbrace{g_{\beta,t}(\mathsf{x}_{i,t})'(\mathsf{f}_{t+1} - \mathbb{E}\mathsf{f}_{t+1})}_{\text{factor innovation}} + e_{i,t+1}$$

-Enable us to understand/improve predictability.

Jianqing Fan (Princeton University)

Structural Deep Learning in CAP

16/44

イロト イヨト イヨト

★ In-sample decomposition: Spot expected return

$$\widehat{m}_{t}(\mathsf{x}_{i,t-1}) \approx \underbrace{g_{\alpha,t}(\mathsf{x}_{i,t-1})}_{\text{mispricing}} + \underbrace{g_{riskP,t}(\mathsf{x}_{i,t-1})}_{g_{\beta,t}(\mathsf{x})'\boldsymbol{\lambda}_{t}} + g_{\beta,t}(\mathsf{x}_{i,t-1})'(\mathsf{f}_{t} - \mathbb{E}\mathsf{f}_{t})$$

-Enable us to asset contributions of each component.

• Out-of-sample decomposition: plug-in the "new" x_{i,t}:

$$\widehat{m}_{t}(\mathsf{x}_{i,t}) \approx g_{\alpha,t}(\mathsf{x}_{i,t}) + g_{riskP,t}(\mathsf{x}_{i,t}) + \underbrace{g_{\beta,t}(\mathsf{x}_{i,t})'(\mathsf{f}_{t} - \mathbb{E}\mathsf{f}_{t})}_{\text{factor realization}}$$

$$y_{i,t+1} \approx g_{\alpha,t}(\mathsf{x}_{i,t+1}) + g_{riskP,t}(\mathsf{x}_{i,t}) + \underbrace{g_{\beta,t}(\mathsf{x}_{i,t})'(\mathsf{f}_{t+1} - \mathbb{E}\mathsf{f}_{t+1})}_{\text{factor innovation}} + e_{i,t+1}$$

Enable us to understand/improve predictability.

Jianqing Fan (Princeton University)

イロト イヨト イヨト -

Methodology

Jianqing Fan (Princeton University)

Structural Deep Learning in CAP

Э

イロト イヨト イヨト イヨト

$$\begin{split} & \mathbb{E}(\mathsf{Y}_{s}|\mathsf{X}_{s-1},\mathsf{f}_{s}) - \mathbb{E}\left(\mathbb{E}(\mathsf{Y}_{s}|\mathsf{X}_{s-1},\mathsf{f}_{s}) \middle| \mathsf{X}_{s-1}\right) \\ &\approx \quad \mathsf{G}_{\beta,t}(\mathsf{X}_{t-1})(\mathsf{f}_{s} - \mathbb{E}\mathsf{f}_{s}), \quad \text{for } s \approx t. \end{split}$$

Locally, $G_{\beta,t}(X_{t-1})$ is the eigenvector.

Estimation Steps:

- **(**) Apply DNN **cross-sectionally** to estimate $\mathbb{E}(Y_s|X_{s-1}, f_s)$.
- **2** Apply **time-domain** kernel smoothing to estimate $\mathbb{E}(Y_s|X_{s-1})$.
- **3** Apply **local PCA** to estimate $G_{\beta,t}(X_{t-1})$ and f_t

<ロト <回ト < 回ト < 回ト < 回ト -

$$\begin{split} & \mathbb{E}(\mathsf{Y}_{s}|\mathsf{X}_{s-1},\mathsf{f}_{s}) - \mathbb{E}\left(\mathbb{E}(\mathsf{Y}_{s}|\mathsf{X}_{s-1},\mathsf{f}_{s}) \middle| \mathsf{X}_{s-1}\right) \\ &\approx \quad \mathsf{G}_{\beta,t}(\mathsf{X}_{t-1})(\mathsf{f}_{s} - \mathbb{E}\mathsf{f}_{s}), \quad \text{for } s \approx t. \end{split}$$

Locally, $G_{\beta,t}(X_{t-1})$ is the eigenvector.

Estimation Steps:

- **4** Apply DNN cross-sectionally to estimate $\mathbb{E}(Y_s|X_{s-1}, f_s)$.
- **2** Apply time-domain kernel smoothing to estimate $\mathbb{E}(Y_s|X_{s-1})$.
- Solution Apply local PCA to estimate $G_{\beta,t}(X_{t-1})$ and f_t

Apply period-by-period DNN

$$\widehat{m}_t = \arg\min_{m \in DNN} \sum_{i=1}^{N} (y_{i,t} - m(\mathsf{x}_{i,t-1}))^2$$

- Captures nonlinearity
- 2 adapts to low-dim structure, avoiding curse of dim.
- Solution behavior is insensitive to tuning

イロト 不得 トイヨト イヨト

★ We use period-by-period DNN, so it can be overfitting.

- ★ DNN performs well in the overfitting regime.
- ★ Pred risks admit a double descent curve as complexity increases. (Belkin et al., 2020; Mei and Montanari, 2019; Belkin et al., 2020; Hastie et al., 2019)
- ★ Illustrate using factor regression (Stock and Watson (2002a)).

$$R_t = b'f_t + e_t, \quad X_{t,p} = B'f_t + u_t$$

predicted by overparatermized linear model

• □ ▶ • 4 □ ▶ • □ ▶ • □ ▶

Illustration of Double Decent

- Simulation DGP is calibrated using actual monthly returns.
- Evaluate out-sample risk $Risk(p) = \frac{1}{25} \sum_{s=1}^{25} (R_{T+s} X'_{T+s,p} \widehat{\theta}_p)^2$.

• Interpretations: diversification effect

Jianqing Fan (Princeton University)

э

イロト イヨト イヨト -

Step 2 - Time-domain Kernel Smoothing

• With bandwidth $h \rightarrow 0$, local kernel weight is

$$w_{s,t} = \frac{1}{h} \mathcal{K}\left(\frac{s-t}{Th}\right) / \frac{1}{Th} \sum_{k=1}^{T} \frac{1}{h} \mathcal{K}\left(\frac{k-t}{Th}\right).$$

Kernel smoothing:

$$E(\widehat{y_{it}|\mathsf{x}_{i,t-1}}) = \frac{1}{T} \sum_{s=1}^{T} \underbrace{\mathbb{E}(\widehat{y_{is}|\mathsf{x}_{i,s-1}},\mathsf{f}_s)}_{\text{from DNN}} w_{s,t}$$

$$\approx g_{\alpha,t}(\mathsf{x}_{i,t-1}) + g_{\textit{riskP},t}(\mathsf{x}_{i,t-1}).$$

э

イロト 不得 トイヨト イヨト

$$\mathbb{E}(y_{is}|\mathsf{x}_{i,s-1},\mathsf{f}_s) - \mathbb{E}(y_{is}|\mathsf{x}_{i,s-1}) \approx g_{\beta,t}(\mathsf{x}_{i,t-1})'(\mathsf{f}_s - \mathbb{E}\mathsf{f}_s), \quad \forall \frac{s}{T} \approx \frac{t}{T}$$

• At each t, estimate $g_{\beta,t}(x_{i,t-1})$ as the eigenvectors of

$$\frac{1}{T}\sum_{s=1}^{T} \Delta_{s} \Delta'_{s} w_{s,t}, \qquad \Delta_{s} = \mathbb{E}(\widehat{y_{is}|x_{i,s-1}}) - \mathbb{E}(\widehat{y_{is}|x_{i,s-1}}, f_{s})$$

and $\widehat{f}_{t} = \widehat{G}'_{\beta,t-1}(\widehat{m}_{t}(X_{t-1}) - \overline{m}_{t}).$

• Conventional Fama-MacBeth type regression

$$\widehat{\lambda}_t = \frac{1}{N} \widehat{\mathsf{G}}_{\beta,t-1}' \overline{\mathsf{m}}_t, \quad \widehat{\mathsf{G}}_{\alpha,t-1} \coloneqq \overline{\mathsf{m}}_t - \widehat{\mathsf{G}}_{\beta,t-1} \widehat{\lambda}_t.$$

Jianqing Fan (Princeton University)

3

イロト 人間ト イヨト イヨト

$$\mathbb{E}(y_{is}|\mathsf{x}_{i,s-1},\mathsf{f}_s) - \mathbb{E}(y_{is}|\mathsf{x}_{i,s-1}) \approx g_{\beta,t}(\mathsf{x}_{i,t-1})'(\mathsf{f}_s - \mathbb{E}\mathsf{f}_s), \quad \forall \frac{s}{T} \approx \frac{t}{T}$$

• At each t, estimate $g_{\beta,t}(x_{i,t-1})$ as the eigenvectors of

$$\frac{1}{T}\sum_{s=1}^{T}\Delta_{s}\Delta'_{s}w_{s,t}, \qquad \Delta_{s} = \mathbb{E}(\widehat{y_{is}|\mathsf{x}_{i,s-1}}) - \mathbb{E}(\widehat{y_{is}|\mathsf{x}_{i,s-1}},\mathsf{f}_{s})$$

and
$$\widehat{\mathsf{f}}_t = \widehat{\mathsf{G}}_{\beta,t-1}'(\widehat{\mathsf{m}}_t(\mathsf{X}_{t-1}) - \overline{\mathsf{m}}_t).$$

• Conventional Fama-MacBeth type regression

$$\widehat{\boldsymbol{\lambda}}_t = \frac{1}{N} \widehat{\mathsf{G}}_{\beta,t-1}' \overline{\mathsf{m}}_t, \quad \widehat{\mathsf{G}}_{\alpha,t-1} \coloneqq \overline{\mathsf{m}}_t - \widehat{\mathsf{G}}_{\beta,t-1} \widehat{\boldsymbol{\lambda}}_t.$$

Jianqing Fan (Princeton University)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For predictions, we need to know how alphas and risks depend on $x_{i,T}$ by use DNN:

$$\widehat{g}_{riskP,T}(\cdot) = \arg \min_{r \in DNN} \sum_{i=1}^{N} (\underbrace{g_{\beta,t}(\widehat{x_{i,T-1}})'\lambda_{T}}_{\widehat{g}_{riskP,T,i}} - r(x_{i,T-1}))^{2}$$

$$\widehat{g}_{\alpha,T}(\cdot) = \arg \min_{g \in DNN} \sum_{i=1}^{N} (\underbrace{g_{\alpha,T}(\widehat{x_{i,T-1}})}_{\widehat{g}_{\alpha,T,i}} - g(x_{i,T-1}))^{2}$$

\star Not only can predict returns, but also can predict α and β .

イロト イポト イヨト イヨト 二日

Theory

Jianqing Fan (Princeton University)

Structural Deep Learning in CAP

୬ < (~ 25 / 44

E

イロト イヨト イヨト イヨト

Theorem 1. Under some 🕩 technical cond.							
Spot E-return:	$\mathbb{E}[\widehat{m}_t(x_{i,t-1}) - \mathbb{E}(y_{it} x_{i,t-1},f_t)]^2 = O_P(\delta_T^2 + \varphi_T^2).$						
long-term:	$\mathbb{E}[\bar{m}_{i,t} - \mathbb{E}(y_{it} x_{i,t-1})]^2 = O_P(\delta_T^2 + \varphi_T^2 + \eta_T^2).$						

Aapproximation error of DNN:

Details about DNN

イロト イボト イヨト イヨト

$$\varphi_{\mathcal{T}} = \max_{t} \inf_{r \in DNN} \|g_{\alpha,t} - r\| + \max_{t} \inf_{r \in DNN} \|g_{\beta,t} - r\|$$

(a) Complexity of the DNN: $\delta_T = \sqrt{\frac{\log(NT)p(DNN)}{N}}$

Smoothing error: $\eta_T = \frac{1}{\sqrt{Th}} + h^2$

Theorem 1. Under so	ome 💌 technical cond.
Spot E-return:	$\mathbb{E}[\widehat{m}_t(x_{i,t-1}) - \mathbb{E}(y_{it} x_{i,t-1},f_t)]^2 = O_P(\delta_T^2 + \varphi_T^2).$
long-term:	$\mathbb{E}[\bar{m}_{i,t} - \mathbb{E}(y_{it} x_{i,t-1})]^2 = O_P(\delta_T^2 + \varphi_T^2 + \eta_T^2).$

Approximation error of DNN:

Details about DNN

イロト イポト イヨト イヨト 二日

$$\varphi_{\mathcal{T}} = \max_{t} \inf_{r \in DNN} \|g_{\alpha,t} - r\| + \max_{t} \inf_{r \in DNN} \|g_{\beta,t} - r\|$$

• Complexity of the DNN: $\delta_T = \sqrt{\frac{\log(NT)p(DNN)}{N}}$

Smoothing error: $\eta_T = \frac{1}{\sqrt{Th}} + h^2$

Statistical errors in function estimation

Theorem 2. For each *t*,

$$\begin{aligned} \frac{1}{N} \sum_{i=1}^{N} [\widehat{g}_{\alpha,t-1,i} - g_{\alpha,t}(\mathsf{x}_{i,t-1})]^2 &= O_P(\delta_T^2 + \varphi_T^2 + \eta_T^2), \\ \frac{1}{N} \sum_{i=1}^{N} [\widehat{g}_{\mathsf{riskP},t,i} - g_{\mathsf{riskP},t}(\mathsf{x}_{i,t-1})]^2 &= O_P(\delta_T^2 + \varphi_T^2 + \eta_T^2) \\ \frac{1}{N} \sum_{i=1}^{N} [\widehat{g}_{\mathsf{factor},t,i} - g_{\mathsf{factor},t}(\mathsf{x}_{i,t-1})]^2 &= O_P(\delta_T^2 + \varphi_T^2 + \eta_T^2). \end{aligned}$$

E

< ロ > < 団 > < 団 > < 豆 > < 豆 > ...

Theorem 3. For the new observations
$$x_{i,T}$$

 $\mathbb{E}(\xi_{i,T+1}|\mathcal{F}_T) = 0$, where $\mathcal{F}_T = \sigma(X_1, ..., X_T)$,
 $y_{i,T+1} = \widehat{g}_{\alpha,T}(x_{i,T}) + \underbrace{\widehat{g}_{riskP,T}(x_{i,T})}_{g'_{\beta}\lambda} + \xi_{i,T+1} + O_P(a_{NT})$,

• We estimate both "g" functions that have predictive power

2 $a_{NT} = \delta_T + \varphi_T + \eta_T$ is the "statistical error".

3

イロト イボト イヨト イヨト

Empirical Analysis

Jianqing Fan (Princeton University)

Structural Deep Learning in CAP

୬ < (~ 29 / 44

Э

イロト イボト イヨト イヨト

- ★ 62 firm characteristics from CRSP and Compustat (Freyberger et al., 2020)
- ★ Sample Period: 1965 2018, 648 months, 4261 firms on ave.
 - ★ Characteristics: market cap, book-to-market, profitability, investment, beta, idiosyncratic volatility, turnover, bid-ask spread, short-term reversal, momentum, intermediate momentum, long-run reversal, total assets, cash over assets, D&A over assets, fixed costs to assets, capex to assets, operating leverage, price-to-cost margin, return-on-equity, operating accruals, free-cash flow to book value of equity, Tobin's Q, net payout ratio, assets-to-market cap, total assets, capital turnover, capital intensity, change in PP&E, earnings to price, and others

イロト 不得 トイラト イラト 二日

- 60 months estimation window
- FNN with 3 layers (32-16-8),
- Bandwidth for kernel h = 0.75.
- Choose 5 factors from eigen-ratios to be safe

• Out-of-sample: 1970 - 2018, one-month ahead pred.

1970 - 2018				1970 - 1999			2000 - 2018				
$R_{\rm total}^2$	$R_{\rm risk}^2$	$g'_{\alpha,t}y_t$	$\frac{g_{\alpha,t}'y_t}{\sigma(g_{\alpha,t}'y_t)}$	$R^2_{\rm total}$	$R_{\rm risk}^2$	$g'_{\alpha,t}y_t$	$\frac{g_{\alpha,t}'y_t}{\sigma(g_{\alpha,t}'y_t)}$	$R^2_{\rm total}$	$R_{\rm risk}^2$	$g'_{\alpha,t}y_t$	$\frac{g_{\alpha,t}'y_t}{\sigma(g_{\alpha,t}'y_t)}$
All Firm	s										
11.89	95.86	2.04	1.23	11.43	95.40	2.03	1.40	12.78	96.75	2.08	1.02
Large Fi	rms										
16.00	95.38	1.92	0.78	14.84	94.89	1.80	0.91	18.28	96.32	2.15	0.66
Small Firms											
11.08	95.59	2.08	1.05	10.55	95.05	2.08	1.24	12.14	96.65	2.06	0.83

★ Large firms: top 20% market CAP

★ Most of the explained variation in returns due to risk (\geq 95%)

\star Mispricing economically meaningful (2% monthly, Sharpe ratio > 1)

イロト 不得 トイヨト イヨト

Risk Premia vs. Factor Shock

$$\widehat{y}_{it} = \beta_{\mathsf{rp}} \widehat{r}_{\mathsf{risk},t,i} + \beta_{\mathsf{factor}} \widehat{g}_{\mathsf{factor},t,i} + \varepsilon_{it}$$

1970 -	2018	1970 -	1999	2000 - 2018		
etarisk premium	$eta_{ extsf{factor shock}}$	or shock eta_{risk} premium eta_{fa}		eta_{risk} premium	$eta_{ ext{factor shock}}$	
All Firms						
0.172	0.973	0.180	0.968	0.157	0.984	
Large Firms 0.127	0.972	0.126	0.967	0.129	0.981	
Small Firms 0.170	0.973	0.175	0.968	0.161	0.983	

★ Factor shock takes lions share

Jianqing Fan (Princeton University)

E

1970 - 2018				1970 - 1999			2000 - 2018				
$R_{\hat{y}}^2$	$R_{g_{lpha}}^{2}$	$R_{g_{\beta}}^{2}$	$R^2_{g_\beta,g_\alpha}$	$R_{\hat{y}}^2$	$R_{g_{lpha}}^{2}$	$R_{g_{\beta}}^{2}$	$R^2_{g_\beta,g_\alpha}$	$R_{\hat{y}}^2$	$R_{g_{\alpha}}^{2}$	$R_{g_{\beta}}^{2}$	$R^2_{g_\beta,g_\alpha}$
All Firms											
1.619	0.826	1.801	2.376	1.520	0.620	1.627	2.027	1.778	1.154	2.079	2.931
Large Fi	rms										
3.106	1.132	3.746	4.571	2.608	0.926	3.066	3.768	3.900	1.460	4.829	5.849
Small Firms											
1.485	0.743	1.557	2.087	1.386	0.525	1.355	1.708	1.643	1.091	1.880	2.690
★ Greater predictive accuracy by focusing only on the risk-premium and											
mispricing, than plugging in new data											
			- ()		,			1.0			

$$y_{i,t+1} \approx \widehat{g}_{\alpha,t}(\mathbf{x}) + \widehat{r}_{risk,t}(\mathbf{x}_{i,t}) + g_{\beta,t}(\mathbf{x}_{i,t})'(\mathbf{f}_{t+1} - \mathbb{E}\mathbf{f}_{t+1}) + e_{i,t+1}$$

$$\widehat{y}_{i,t+1|t} \approx \widehat{g}_{\alpha,t}(\mathbf{x}) + \widehat{r}_{risk,t}(\mathbf{x}_{i,t}) + g_{\beta,t}(\mathbf{x}_{i,t})'(\mathbf{f}_{t} - \mathbb{E}\mathbf{f}_{t})$$

Temporal Evolution of Pricing error

- Smallest 80% firms, pricing error decays in recent sample
- Evidence of allowing time-varying $g_{\alpha,t}(x)$:

$$\frac{1}{N_t}g'_{\alpha}\widehat{y}_t \to^P \int_0^1 g_{\alpha,t}(x)^2 dx$$

• Economic interpretation: "learn and arbitrage away"

Simulation model

• Generate five characteristics: for each *i*, *t*,

$$x_{i,t,k} = \frac{1}{N+1} \operatorname{rank}(\bar{x}_{i,t,k}), \quad \bar{x}_{i,t,k} = 0.98^k \bar{x}_{i,t,k-1} + \epsilon_{x,i,t,k},$$

• Set
$$g_{\alpha,t}(\mathsf{x}) = [\phi_1(\mathsf{x}), ..., \phi_5(\mathsf{x})] \boldsymbol{\theta}_{\alpha,t}$$
, where:

$$\min_{\boldsymbol{\theta}_t} \sum_{i=1}^N (g_{\alpha,t}(\mathsf{x}_{i,t-1}) - \widehat{a}_i)^2, \qquad \sum_{i=1}^N g_{\alpha,t}(\mathsf{x}_{i,t-1}) g_{\beta,t}(\mathsf{x}_{i,t-1}) = 0$$

\widehat{a}_i is the alpha from Fama-French-5.

• $g_{\alpha,t}(x_{i,t-1})$ explains 20% variations in $\mathbb{E}(y_{it}|x_{i,t-1})$ at each period.

• Fix N = 500 firms and T = 200 periods.

э

イロト イボト イヨト イヨト

Simulation model

• Generate five characteristics: for each *i*, *t*,

$$x_{i,t,k} = \frac{1}{N+1} \operatorname{rank}(\bar{x}_{i,t,k}), \quad \bar{x}_{i,t,k} = 0.98^k \bar{x}_{i,t,k-1} + \epsilon_{x,i,t,k},$$

• Set
$$g_{\alpha,t}(\mathsf{x}) = [\phi_1(\mathsf{x}), ..., \phi_5(\mathsf{x})] \boldsymbol{\theta}_{\alpha,t}$$
, where:

$$\min_{\boldsymbol{\theta}_t} \sum_{i=1}^{N} (g_{\alpha,t}(\mathsf{x}_{i,t-1}) - \widehat{a}_i)^2, \qquad \sum_{i=1}^{N} g_{\alpha,t}(\mathsf{x}_{i,t-1}) g_{\beta,t}(\mathsf{x}_{i,t-1}) = 0$$

 \widehat{a}_i is the alpha from Fama-French-5.

- $g_{\alpha,t}(\mathsf{x}_{i,t-1})$ explains 20% variations in $\mathbb{E}(y_{it}|\mathsf{x}_{i,t-1})$ at each period.
- Fix N = 500 firms and T = 200 periods.

3

イロト 不得下 イヨト イヨト

In-sample and Out-of-sample RMSE

	alı	oha	risk				
	median std ×10		median	std $\times 10$			
	In-sample						
DNN-varying	0.880	0.880 0.160 0		0.145			
Linear-varying	1.334	0.687	0.657	0.175			
DNN-mw	0.884	0.128	0.763	0.104			
Linear-mw	1.420 0.823 0.925		0.925	0.209			
		Out-of-sample					
DNN-varying	0.893	0.200	0.518	0.271			
Linear-varying	0.972	0.444	0.547	0.286			
DNN-mw	0.946	0.199	0.624	0.216			
Linear-mw	1.047	0.539	0.717	0.385			

The set of the set of

Jianqing Fan (Princeton University)

3

イロト 不得下 イヨト イヨト

★ New methods to understand neural network predictions in finance

★ Decompose in- and out-of-sample predictions:
 •risk premium (1:5) •factor exposure •mispricing (5%-R², 2%-mRet.)

★ factor exposure has no pred power; riskP dominates pred

★ Important to model the time-varyingness.

★ First theoretical analysis of neural networks in finance

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

★ New methods to understand neural network predictions in finance

- ★ Decompose in- and out-of-sample predictions:
 •risk premium (1:5) •factor exposure •mispricing (5%-R², 2%-mRet.)
- ★ factor exposure has no pred power; riskP dominates pred
- ★ Important to model the time-varyingness.
- ★ First theoretical analysis of neural networks in finance

The End

イロト イヨト イヨト イヨト

Jianqing Fan (Princeton University)

Structural Deep Learning in CAP

୬ < ୍ 39 / 44

Э

Technical Conditions

- Cross sectional independence and serial weak dependences.
- Smooth over time:

$$\mathbb{E}(y_{it}|\mathsf{x}_{i,t-1}) = m_i\left(\frac{t}{T}\right), \quad g_{\beta,t}(\mathsf{x}_{i,t-1}) = \mathsf{g}_i\left(\frac{t}{T}\right), \forall t = 1, ..., T,$$

where the functions are continuously twice-differentiable.

3 For DNN: (i) functions
$$m_t^0, g_{\alpha,t}$$
 and $g_{\beta,t}$ belong to the Hölder ball:

$$\|f\|_{\mathcal{H},q,\gamma} = \sup_{\mathbf{a},\mathbf{b}} \frac{|f^{(q)}(\mathbf{a}) - f^{(q)}(\mathbf{b})|}{\|\mathbf{a} - \mathbf{b}\|^{\gamma}} < L.$$

(ii) Dim of neuralnet satisfies: $p(\mathcal{M}_{J,L}) \log^{3/2}(NT) = o(N)$.

Some moment bounds

5
$$\mathbb{E}(\gamma_T | \mathcal{F}_T) = 0, \mathbb{E}(f_{T+1} | \mathcal{F}_T) = \mathbb{E}f_{T+1}.$$

back to Thm1

イロト イポト イヨト イヨト 二日

More details about DNN

• For DNN approximation to composition of smooth functions

$$f_0 = g_q \circ g_{q-1} \circ \dots \circ g_1$$

 \blacktriangleright (Schmidt-Hieber, 2020): with properly chosen width J and depth L,

 $\varphi_{\mathcal{T}} = N^{-\max_{i \leq q} \frac{\beta_i}{\beta_i + d_i}}, \qquad \beta_i = \text{smoothness of } g_i$

• d_i is the instrinsic dimension, and can be much smaller than dim(x).

e.g., for single index models, $d_i = 1$.

- DNN adaptively achieves the fast approximation rate
- Por the complexity:
 - p(DNN) is the VC dimension of the graph $\{h(x) y : h \in DNN\}$.
 - · Bartlett et al. (2019): For ReLu networks,

 $p(DNN) \leq CJ^2 L^2 \log(JL).$

Jianqing Fan (Princeton University)

back to Thm1

References I

- Avramov, D., S. Cheng, and L. Metzker (2021). Machine learning versus economic restrictions: Evidence from stock return predictability. Available at SSRN 3450322.
- Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica 71, 135-171.
- Bali, T., A. Goyal, D. Huang, F. Jiang, and Q. Wen (2021). Different strokes: Return predictability across stocks and bonds with machine learning and big data. Swiss Finance Institute, Research Paper Series, 20–110.
- Bartlett, P. L., N. Harvey, C. Liaw, and A. Mehrabian (2019). Nearly-tight vc-dimension and pseudodimension bounds for piecewise linear neural networks. J. Mach. Learn. Res. 20, 63–1.
- Belkin, M., D. Hsu, and J. Xu (2020). Two models of double descent for weak features. SIAM Journal on Mathematics of Data Science 2(4), 1167–1180.
- Bianchi, D., M. Büchner, and A. Tamoni (2021). Bond risk premiums with machine learning. The Review of Financial Studies 34(2), 1046–1089.
- Bryzgalova, S., M. Pelger, and J. Zhu (2020). Forest through the trees: Building cross-sections of stock returns. Available at SSRN 3493458.
- Chen, L., M. Pelger, and J. Zhu (2020). Deep learning in asset pricing. Available at SSRN 3350138.
- Cong, L. W., K. Tang, J. Wang, and Y. Zhang (2021). Alphaportfolio: Direct construction through deep reinforcement learning and interpretable ai. Available at SSRN 3554486.
- Connor, G. and R. A. Korajczyk (1986). Performance measurement with the arbitrage pricing theory: A new framework for analysis. Journal of Financial Economics 15(3), 373–394.
- Connor, G., H. Matthias, and O. Linton (2012). Efficient semiparametric estimation of the fama-french model and extensions. *Econometrica* 80, 713–754.

3

イロト イボト イヨト イヨト

References II

- DeMiguel, V., A. Martin-Utrera, F. J. Nogales, and R. Uppal (2020). A transaction-cost perspective on the multitude of firm characteristics. *The Review of Financial Studies* 33(5), 2180–2222.
- Fan, J., Y. Liao, and W. Wang (2016). Projected principal component analysis in factor models. Annals of Statistics 44(1), 219–254.
- Ferson, W. E. and C. R. Harvey (1999). Conditioning variables and the cross section of stock returns. *The Journal of Finance* 54(4), 1325–1360.
- Freyberger, J., A. Neuhierl, and M. Weber (2020). Dissecting characteristics nonparametrically. The Review of Financial Studies 33(5), 2326–2377.
- Gagliardini, P., E. Ossola, and O. Scaillet (2016). Time-varying risk premium in large cross-sectional equity data sets. *Econometrica* 84(3), 985–1046.
- Ghysels, E. (1998). On stable factor structures in the pricing of risk: do time-varying betas help or hurt? The Journal of Finance 53, 549–573.
- Giglio, S., Y. Liao, and D. Xiu (2021). Thousands of alpha tests. The Review of Financial Studies 34(7), 3456–3496.
- Giglio, S. and D. Xiu (2021). Asset pricing with omitted factors. Journal of Political Economy 129(7), 000-000.
- Gu, S., B. Kelly, and D. Xiu (2020). Empirical asset pricing via machine learning. The Review of Financial Studies 33(5), 2223–2273.
- Gu, S., B. T. Kelly, and D. Xiu (2019). Autoencoder asset pricing models.
- Hastie, T., A. Montanari, S. Rosset, and R. J. Tibshirani (2019). Surprises in high-dimensional ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560.

э

イロト 不得 トイヨト イヨト

References III

- Kelly, B. T., S. Pruitt, and Y. Su (2019). Characteristics are covariances: A unified model of risk and return. Journal of Financial Economics 134(3), 501–524.
- Kelly, B. T., S. Pruitt, and Y. Su (2020). Instrumented principal component analysis. Available at SSRN 2983919.
- Kim, S., R. A. Korajczyk, and A. Neuhierl (2021). Arbitrage portfolios. The Review of Financial Studies 34(6), 2813-2856.
- Lettau, M. and S. Ludvigson (2001). Resurrecting the (c) capm: A cross-sectional test when risk premia are time-varying. Journal of political economy 109(6), 1238–1287.
- Li, B. and A. G. Rossi (2020). Selecting mutual funds from the stocks they hold: A machine learning approach. Available at SSRN 3737667.
- Mei, S. and A. Montanari (2019). The generalization error of random features regression: Precise asymptotics and the double descent curve. Communications on Pure and Applied Mathematics.
- Rossi, A. G. and S. P. Utkus (2020). Who benefits from robo-advising? evidence from machine learning. Evidence from Machine Learning (March 10, 2020).
- Schmidt-Hieber, J. (2020). Nonparametric regression using deep neural networks with relu activation function. The Annals of Statistics 48(4), 1875–1897.
- Shanken, J. (1990). Intertemporal asset pricing: An empirical investigation. Journal of Econometrics 45(1-2), 99-120.
- Stock, J. and M. Watson (2002a). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association 97, 1167–1179.
- Stock, J. and M. Watson (2002b). Macroeconomic forecasting using diffusion indexes. Journal of Business & Economic Statistics 20(2), 147–162.

3

イロト イポト イヨト イヨト