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Motivation

Expected
Return NOISE

Returns are noisy

Understanding expected returns and volatility is all we can do

Understanding expected returns is still really hard!
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Challenge of Asset Pricing

Why so hard?

☀ High-dim set of possible signals (firm characteristics).

☀ Theory is silent of how signals relate to returns

▸ Unknown functional forms

▸ Unknown dynamics (risks can change over time)

▸ Unknown interpretation (risk vs. mispricing)

☀ Curse of dimensionality of nonparametric modeling
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Classical Solutions

☀ Additive model: E [y ∣x1, ..., xd] = ∑
d
i=1 fi(xi) rate: N−2/5

☀ Single index models E [y ∣X] = f (XTβ) rate: N−2/5

☀ Structural rather than algorithmic solutions.

∎Statistical Machine Learning such as Neural networks come to rescue
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Why Deep Neural Networks?

☀ Univ. approx: any sup-smooth function can be appr. by an NN (Barron, 93):

f (x) Inv Fourier= ∫
Rd

exp(iωT x)f̃ (ω)dω = Eω∼g exp(iωT x) f̃ (ω)
g(ω)

≈ N−1
N

∑
j=1

exp(iωT
j x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
σ(ωT

j
x)

f̃(ωj)
g(ωj)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
weight βj

+ OP(N−1/2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

no curse-of-dim.

, if Eω∼g ∣
f̃ (ω)
g(ω)

∣
2
< C .

☀ A tooth function w/ O(2k) oscillations (Telgarsky, 16) is

●a ReLU-DNN with depth O(k) and width O(1),

●a one-layer ReLU-DNN but with Ω(2k) nodes.

●extendable to Lipchitz functions.

☀ Adapt to unknown comp: Compositions

of DNN is a deeper DNN. ●No COD in implementation.

From Bauer and Kohler, 2019, AOS
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What neural networks can do

Expected
Return

(linear model)
NOISE

Expected
Return
(DNN)

NOISE

ML can explain more expected returns

Produce good estimates of

ŷit = E[excess return∣high dimensional info]
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Understanding source of returns

Expected Return
(DNN)

Risk
Premium

Factor
Component

Mispricing

Provide an interpretation of ŷi ,t+1∣t

Decomposition into compensation for risk and mispricing

Evolution of return components over time
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What is this paper?

☀ Impose mild economic structure

☀ Expected returns from deep neural network

☀ In-sample Expected return: mispricing + risk premium + factor realization

☀ Out-of-sample prediction: mispricing + risk premium + factor innovation

☀ Provide novel methods to estimate each of 3 component

☀ Derive rigorous asymptotic theory

☀ Factor accounts 95% (riskP: 1/5) and mispricing 5% (Sharpe: 1.23, ↓ in t)

☀ Predictions in asset pricing are very noisy due to factor realizations;

●should be removed for predictions.
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Interpretable Asset Model
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Conditional factor model:

yi ,t = αi ,t−1 +β′i ,t−1λt +β′i ,t−1(ft −Eft) + uit

α – potential mispricing

β – risk exposure

λt – factor risk premia

ft – factor realization

∎all time-varying
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Impact of Firm Characteristics

∎xi ,t carry information about alphas and betas:

αi ,t−1 = gα,t(xi ,t−1) + γα,i ,t−1

βi ,t−1 = gβ,t(xi,t−1) + γβ,i ,t−1

gα,t – mispricing function

gβ,t – factor loading function

gα,t(⋅) and gβ,t(⋅) can change over time

α and β may vary in high-frequency due to γt
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Structural machine learning predictions

☀ Obtain m̂t(⋅) by DNN on {(yi ,t , xi ,t−1)}
N
i=1 for each t, estimating

m0
t (xi,t−1) = E(yi,t∣xi,t−1, ft), yi ,t = m0

t (xi ,t−1) + ei ,t .

☀ Predict out-of-sample by “pluging in new data”

ŷi ,t+1∣t = m̂t(xi ,t)

☀ Little interpretation about source of predictability.

Aim to open the black box

Jianqing Fan (Princeton University) Structural Deep Learning in CAP 15 / 44



Structural machine learning predictions

☀ Obtain m̂t(⋅) by DNN on {(yi ,t , xi ,t−1)}
N
i=1 for each t, estimating

m0
t (xi,t−1) = E(yi,t∣xi,t−1, ft), yi ,t = m0

t (xi ,t−1) + ei ,t .

☀ Predict out-of-sample by “pluging in new data”
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Interpretation

☀ In-sample decomposition: Spot expected return

m̂t(xi,t−1) ≈ gα,t(xi,t−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

mispricing

+griskP,t(xi,t−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

gβ,t(x)′λt

+gβ,t(xi,t−1)
′
(ft −Eft)

—Enable us to asset contributions of each component.

Out-of-sample decomposition: plug-in the “new” xi,t :

m̂t(xi,t) ≈ gα,t(xi,t) + griskP,t(xi,t) + gβ,t(xi,t)
′
(ft −Eft)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
factor realization

yi,t+1 ≈ gα,t(xi,t+1) + griskP,t(xi,t) + gβ,t(xi,t)
′
(ft+1 −Eft+1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
factor innovation

+ei,t+1

—Enable us to understand/improve predictability.
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Methodology
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Building block

E(Ys ∣Xs−1, fs) −E(E(Ys ∣Xs−1, fs)∣Xs−1)

≈ Gβ,t(Xt−1)(fs −Efs), for s ≈ t.

∎Locally, Gβ,t(Xt−1) is the eigenvector.

Estimation Steps:

1 Apply DNN cross-sectionally to estimate E(Ys ∣Xs−1, fs).

2 Apply time-domain kernel smoothing to estimate E(Ys ∣Xs−1).

3 Apply local PCA to estimate Gβ,t(Xt−1) and ft
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Step 1 – Cross sectional DNN

∎Apply period-by-period DNN

m̂t = arg min
m∈DNN

N

∑
i=1

(yi ,t −m(xi ,t−1))
2

1 Captures nonlinearity

2 adapts to low-dim structure, avoiding curse of dim.

3 behavior is insensitive to tuning
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Double-Descent Risk: miracle of overfitting

☀ We use period-by-period DNN, so it can be overfitting.

☀ DNN performs well in the overfitting regime.

☀ Pred risks admit a double descent curve as complexity increases.

(Belkin et al., 2020; Mei and Montanari, 2019; Belkin et al., 2020; Hastie et al., 2019)

☀ Illustrate using factor regression (Stock and Watson (2002a)).

Rt = b′ft + et, Xt,p = B′ft + ut

predicted by overparatermized linear model
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Illustration of Double Decent

Simulation DGP is calibrated using actual monthly returns.

Evaluate out-sample risk Risk(p) = 1
25 ∑

25
s=1(RT+s −X′

T+s,pθ̂p)
2.

0 100 200 300 400 500

Number of Regressors

0

0.01

0.02
Double Descent of the Prediction Risk

Prediction Risk

Interpolation Threshold

Interpretations: diversification effect

Jianqing Fan (Princeton University) Structural Deep Learning in CAP 21 / 44



Step 2 - Time-domain Kernel Smoothing

With bandwidth h → 0, local kernel weight is

ws,t =
1

h
K (

s − t

Th
)/

1

Th

T

∑
k=1

1

h
K (

k − t

Th
) .

Kernel smoothing:

̂E(yit ∣xi,t−1) =
1

T

T

∑
s=1

̂E(yis ∣xi,s−1, fs)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

from DNN

ws,t

≈ gα,t(xi,t−1) + griskP,t(xi,t−1).
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Step 3 - Local PCA

E(yis ∣xi ,s−1, fs) −E(yis ∣xi ,s−1) ≈ gβ,t(xi ,t−1)
′
(fs −Efs), ∀

s

T
≈

t

T

At each t, estimate gβ,t(xi ,t−1) as the eigenvectors of

1

T

T

∑
s=1

∆s∆′
sws,t , ∆s =

̂E(yis ∣xi ,s−1) −
̂E(yis ∣xi ,s−1, fs)

and f̂t = Ĝ′
β,t−1(m̂t(Xt−1) − m̄t).

Conventional Fama-MacBeth type regression

λ̂t =
1

N
Ĝ′
β,t−1m̄t , Ĝα,t−1 ∶= m̄t − Ĝβ,t−1λ̂t .
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Step 4 – Out-of-sample Predictions

☀ For predictions, we need to know how alphas and risks depend on xi ,T

by use DNN:

ĝriskP,T (⋅) = arg min
r∈DNN

N

∑
i=1

( ̂gβ,t(xi ,T−1)
′λT

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ĝriskP,T ,i

−r(xi ,T−1))
2

ĝα,T (⋅) = arg min
g∈DNN

N

∑
i=1

( ̂gα,T (xi ,T−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ĝα,T ,i

−g(xi ,T−1))
2

☀ Not only can predict returns, but also can predict α and β.
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Theory
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In sample theory

Theorem 1. Under some technical cond.

Spot E-return: E[m̂t(xi ,t−1) −E(yit ∣xi ,t−1, ft)]
2
= OP(δ

2
T + ϕ2

T ).

long-term: E[m̄i ,t −E(yit ∣xi ,t−1)]
2
= OP(δ

2
T + ϕ2

T + η2
T ).

1 Aapproximation error of DNN: Details about DNN

ϕT = max
t

inf
r∈DNN

∥gα,t − r∥ +max
t

inf
r∈DNN

∥gβ,t − r∥

2 Complexity of the DNN: δT =

√
log(NT)p(DNN)

N

3 Smoothing error: ηT = 1√
Th

+ h2

Jianqing Fan (Princeton University) Structural Deep Learning in CAP 26 / 44



In sample theory

Theorem 1. Under some technical cond.

Spot E-return: E[m̂t(xi ,t−1) −E(yit ∣xi ,t−1, ft)]
2
= OP(δ

2
T + ϕ2

T ).

long-term: E[m̄i ,t −E(yit ∣xi ,t−1)]
2
= OP(δ

2
T + ϕ2

T + η2
T ).

1 Aapproximation error of DNN: Details about DNN

ϕT = max
t

inf
r∈DNN

∥gα,t − r∥ +max
t

inf
r∈DNN

∥gβ,t − r∥

2 Complexity of the DNN: δT =

√
log(NT)p(DNN)

N

3 Smoothing error: ηT = 1√
Th

+ h2

Jianqing Fan (Princeton University) Structural Deep Learning in CAP 26 / 44



Statistical errors in function estimation

Theorem 2. For each t,

1

N

N

∑
i=1

[ĝα,t−1,i − gα,t(xi ,t−1)]
2

= OP(δ
2
T + ϕ2

T + η2
T ),

1

N

N

∑
i=1

[ĝriskP,t,i − griskP,t(xi ,t−1)]
2

= OP(δ
2
T + ϕ2

T + η2
T )

1

N

N

∑
i=1

[ĝfactor,t,i − gfactor,t(xi ,t−1)]
2

= OP(δ
2
T + ϕ2

T + η2
T ).
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Out of sample Theory

Theorem 3. For the new observations xi ,T

E(ξi ,T+1∣FT ) = 0, where FT = σ(X1, ...,XT ),

yi ,T+1 = ĝα,T (xi ,T ) + ĝriskP,T (xi ,T )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

g ′
β
λ

+ξi ,T+1 +OP(aNT ),

1 We estimate both “g” functions that have predictive power

2 aNT = δT + ϕT + ηT is the “statistical error”.
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Empirical Analysis
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Data

☀ 62 firm characteristics from CRSP and Compustat (Freyberger et al., 2020)

☀ Sample Period: 1965 - 2018, 648 months, 4261 firms on ave.

☀ Characteristics: market cap, book-to-market, profitability, investment, beta,

idiosyncratic volatility, turnover, bid-ask spread, short-term reversal, momentum,

intermediate momentum, long-run reversal, total assets, cash over assets, D&A over

assets, fixed costs to assets, capex to assets, operating leverage, price-to-cost

margin, return-on-equity, operating accruals, free-cash flow to book value of equity,

Tobin’s Q, net payout ratio, assets-to-market cap, total assets, capital turnover,

capital intensity, change in PP&E, earnings to price, and others
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Implementation Details

60 months estimation window

FNN with 3 layers (32-16-8),

Bandwidth for kernel h = 0.75.

Choose 5 factors from

eigen-ratios to be safe

Out-of-sample: 1970 - 2018, one-month ahead pred.
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In-sample Decomposition

1970 - 2018 1970 - 1999 2000 - 2018

R2
total R2

risk g ′α,tyt
g ′α,tyt

σ(g ′α,tyt)
R2

total R2
risk g ′α,tyt

g ′α,tyt
σ(g ′α,tyt)

R2
total R2

risk g ′α,tyt
g ′α,tyt

σ(g ′α,tyt)

All Firms

11.89 95.86 2.04 1.23 11.43 95.40 2.03 1.40 12.78 96.75 2.08 1.02

Large Firms

16.00 95.38 1.92 0.78 14.84 94.89 1.80 0.91 18.28 96.32 2.15 0.66

Small Firms

11.08 95.59 2.08 1.05 10.55 95.05 2.08 1.24 12.14 96.65 2.06 0.83

☀ Large firms: top 20% market CAP

☀ Most of the explained variation in returns due to risk (≥ 95%)

☀ Mispricing economically meaningful (2% monthly, Sharpe ratio > 1)
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Risk Premia vs. Factor Shock

ŷit = βrpr̂risk,t,i + βfactorĝfactor,t,i + εit

1970 - 2018 1970 - 1999 2000 - 2018

βrisk premium βfactor shock βrisk premium βfactor shock βrisk premium βfactor shock

All Firms

0.172 0.973 0.180 0.968 0.157 0.984

Large Firms

0.127 0.972 0.126 0.967 0.129 0.981

Small Firms

0.170 0.973 0.175 0.968 0.161 0.983

☀ Factor shock takes lions share
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Out-of-sample Decomposition

1970 - 2018 1970 - 1999 2000 - 2018

R2
ŷ R2

gα R2
gβ

R2
gβ ,gα

R2
ŷ R2

gα R2
gβ

R2
gβ ,gα

R2
ŷ R2

gα R2
gβ

R2
gβ ,gα

All Firms

1.619 0.826 1.801 2.376 1.520 0.620 1.627 2.027 1.778 1.154 2.079 2.931

Large Firms

3.106 1.132 3.746 4.571 2.608 0.926 3.066 3.768 3.900 1.460 4.829 5.849

Small Firms

1.485 0.743 1.557 2.087 1.386 0.525 1.355 1.708 1.643 1.091 1.880 2.690

☀ Greater predictive accuracy by focusing only on the risk-premium and

mispricing, than plugging in new data

yi ,t+1 ≈ ĝα,t(x) + r̂risk,t(xi ,t) + gβ,t(xit)
′
(ft+1 −Eft+1) + ei ,t+1

ŷi ,t+1∣t ≈ ĝα,t(x) + r̂risk,t(xi ,t) + gβ,t(xit)
′
(ft −Eft)
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Temporal Evolution of Pricing error

-2e-04

0e+00

2e-04

1970 1980 1990 2000 2010

1 N
t
g
′ α
,t
ŷ t

Small Firms

Smallest 80% firms, pricing error decays in recent sample

Evidence of allowing time-varying gα,t(x):

1

Nt
g ′αŷt →

P
∫

1

0
gα,t(x)

2dx

Economic interpretation: “learn and arbitrage away”.
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Simulation model

Generate five characteristics: for each i , t,

xi,t,k =
1

N + 1
rank(x̄i,t,k), x̄i,t,k = 0.98k x̄i,t,k−1 + εx,i,t,k ,

Set gα,t(x) = [φ1(x), ..., φ5(x)]θα,t , where:

min
θt

N

∑
i=1

(gα,t(xi,t−1) − âi)
2,

N

∑
i=1

gα,t(xi,t−1)gβ,t(xi,t−1) = 0

âi is the alpha from Fama-French-5.

gα,t(xi,t−1) explains 20% variations in E(yit ∣xi,t−1) at each period.

Fix N = 500 firms and T = 200 periods.
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In-sample and Out-of-sample RMSE

alpha risk

median std ×10 median std ×10

In-sample

DNN-varying 0.880 0.160 0.589 0.145

Linear-varying 1.334 0.687 0.657 0.175

DNN-mw 0.884 0.128 0.763 0.104

Linear-mw 1.420 0.823 0.925 0.209

Out-of-sample

DNN-varying 0.893 0.200 0.518 0.271

Linear-varying 0.972 0.444 0.547 0.286

DNN-mw 0.946 0.199 0.624 0.216

Linear-mw 1.047 0.539 0.717 0.385

☀DNN-varying outperforms competing methods
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Summary

☀ New methods to understand neural network predictions in finance

☀ Decompose in- and out-of-sample predictions:

●risk premium (1:5) ●factor exposure ●mispricing (5%-R2, 2%-mRet.)

☀ factor exposure has no pred power; riskP dominates pred

☀ Important to model the time-varyingness.

☀ First theoretical analysis of neural networks in finance
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The End

g{tÇ~ lÉâ

Jianqing Fan (Princeton University) Structural Deep Learning in CAP 39 / 44



Technical Conditions

1 Cross sectional independence and serial weak dependences.

2 Smooth over time:

E(yit ∣xi,t−1) = mi (
t

T
) , gβ,t(xi,t−1) = gi (

t

T
) ,∀t = 1, ...,T ,

where the functions are continuously twice-differentiable.

3 For DNN: (i) functions m0
t ,gα,t and gβ,t belong to the Hölder ball:

∥f ∥H,q,γ = sup
a,b

∣f (q)(a) − f (q)(b)∣

∥a − b∥γ
< L.

(ii) Dim of neuralnet satisfies: p(MJ,L) log3/2
(NT ) = o(N).

4 Some moment bounds

5 E(γT ∣FT ) = 0, E(fT+1∣FT ) = EfT+1.

back to Thm1

Jianqing Fan (Princeton University) Structural Deep Learning in CAP 40 / 44



More details about DNN

1 For DNN approximation to composition of smooth functions

f0 = gq ○ gq−1 ○ ... ○ g1

▸ (Schmidt-Hieber, 2020): with properly chosen width J and depth L,

ϕT = N
−maxi≤q

βi
βi+di , βi = smoothness of gi

▸ di is the instrinsic dimension, and can be much smaller than dim(x).

e.g., for single index models, di = 1.

▸ DNN adaptively achieves the fast approximation rate

2 For the complexity: back to Thm1

▸ p(DNN) is the VC dimension of the graph {h(x) − y ∶ h ∈ DNN}.

▸ Bartlett et al. (2019): For ReLu networks,

p(DNN) ≤ CJ2L2 log(JL).
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